Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA.
Nanoscale. 2013 Dec 21;5(24):12206-11. doi: 10.1039/c3nr03988a.
Graphene has become one of the most promising materials for future optoelectronics due to its ultrahigh charge-carrier mobility, high light transmission, and universal absorbance in the near-infrared and visible spectral ranges. However, a zero band gap and ultrafast recombination of the photoexcited electron-hole pairs limit graphene's potential in photovoltaic generation. Recent studies have shown that hot carriers can enhance photovoltaic generation in graphene p-n junctions through the photothermoelectric effect (PTE). It is, therefore, desirable to synthesize graphene nanostructures with an intrinsic PTE-induced photocurrent response. Here we report a simple method to synthesize quasi-one dimensional (quasi-1D) curled graphene ribbons (CGRs) that generate a photocurrent response with two orders of magnitude enhancement. Scanning photocurrent and photoluminescence measurements reveal that the photocurrent response is primarily attributed to the PTE and that the infrared emission may arise from thermal radiation. These results offer a new way to fabricate graphene-based optoelectronics with an enhanced photoresponse.
石墨烯因其超高的电荷载流子迁移率、高光透过率以及在近红外和可见光光谱范围内的普遍吸收率,成为未来光电子学最有前途的材料之一。然而,零带隙和光生电子-空穴对的超快复合限制了石墨烯在光伏发电中的应用。最近的研究表明,通过光热电效应(PTE),热载流子可以增强石墨烯 p-n 结中的光伏发电。因此,理想的情况是合成具有本征 PTE 诱导光电流响应的石墨烯纳米结构。在这里,我们报告了一种简单的方法来合成准一维(quasi-1D)卷曲石墨烯带(CGR),其光电流响应增强了两个数量级。扫描光电流和光致发光测量表明,光电流响应主要归因于 PTE,而红外发射可能来自热辐射。这些结果为制备具有增强光响应的基于石墨烯的光电设备提供了一种新方法。