†Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37212, United States.
‡Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, United States.
ACS Nano. 2015 May 26;9(5):5357-63. doi: 10.1021/acsnano.5b01065. Epub 2015 Apr 20.
We investigate the wavelength- and polarization-dependence of photocurrent signals generated at few-layer MoS2-metal junctions through spatially resolved photocurrent measurements. When incident photon energy is above the direct bandgap of few-layer MoS2, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, which can be attributed to photovoltaic effects. In contrast, if incident photon energy is below the direct bandgap of MoS2, the photocurrent response is maximized when the incident light is polarized in the direction perpendicular to the electrode edge, indicating different photocurrent generation mechanisms. Further studies show that this polarized photocurrent response can be interpreted in terms of the polarized absorption of light by the plasmonic metal electrode, its conversion into hot electron-hole pairs, and subsequent injection into MoS2. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in metal-semiconductor junctions, opening the door for engineering future two-dimensional materials based optoelectronics through surface plasmon resonances.
我们通过空间分辨光电流测量研究了在少层 MoS2-金属结处产生的光电流信号的波长和偏振依赖性。当入射光子能量高于少层 MoS2 的直接带隙时,光电流的最大响应出现在与金属电极边缘平行的光偏振方向,这可以归因于光伏效应。相比之下,如果入射光子能量低于 MoS2 的直接带隙,则当入射光以垂直于电极边缘的方向偏振时,光电流响应最大,表明存在不同的光电流产生机制。进一步的研究表明,这种偏振光电流响应可以用等离子体金属电极对光的偏振吸收、将其转化为热电子-空穴对以及随后注入 MoS2 来解释。这些基础研究揭示了金属-半导体结中光电流产生机制的知识,为通过表面等离子体共振工程未来的二维材料光电技术开辟了道路。