Suppr超能文献

环形超材料中的共振透明性和非平凡非辐射激发

Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials.

作者信息

Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I

机构信息

Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, SO17 1BJ, UK.

出版信息

Sci Rep. 2013 Oct 17;3:2967. doi: 10.1038/srep02967.

Abstract

Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)].

摘要

参与强共振相互作用可显著增强许多电磁器件的功能。然而,共振可能会因焦耳损耗和辐射损耗而受到抑制。虽然在许多情况下,通过选择构成材料可以使焦耳损耗最小化,但控制辐射损耗往往是一个更大的问题。最近的解决方案包括使用耦合的辐射模式和亚辐射模式,在从光子晶体中的缺陷态、带有介观环形谐振器的光波导到表现出类似于电磁诱导透明的干涉效应的纳米级等离子体和超材料系统等广泛的系统中产生窄的非对称法诺共振。在此,我们从理论上证明并通过实验证实了一种共振电磁透明的新机制,该机制在环形超材料中产生非常窄的孤立对称洛伦兹传输线。它利用了基于干涉电偶极子和环形偶极子的长期寻求的非平凡无辐射电荷 - 电流激发,这是由阿法纳西耶夫和斯捷潘诺夫斯基在[《物理学报A:数学与一般物理》28, 4565 (1995)]中首次提出的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94cb/3797985/d3871b32573e/srep02967-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验