Barati Sedeh Hooman, Litchinitser Natalia M
Department of Electrical and Computer Engineering, Duke University, 27708 Durham, NC, USA.
Nanophotonics. 2023 Apr 5;12(14):2687-2716. doi: 10.1515/nanoph-2023-0030. eCollection 2023 Jul.
The rapid development of optical technologies, such as optical manipulation, data processing, sensing, microscopy, and communications, necessitates new degrees of freedom to sculpt optical beams in space and time beyond conventionally used spatially homogenous amplitude, phase, and polarization. Structuring light in space and time has been indeed shown to open new opportunities for both applied and fundamental science of light. Rapid progress in nanophotonics has opened up new ways of "engineering" ultra-compact, versatile optical nanostructures, such as optical two-dimensional metasurfaces or three-dimensional metamaterials that facilitate new ways of optical beam shaping and manipulation. Here, we review recent progress in the field of structured light-matter interactions with a focus on all-dielectric nanostructures. First, we introduce the concept of singular optics and then discuss several other families of spatially and temporally structured light beams. Next, we summarize recent progress in the design and optimization of photonic platforms, and then we outline some new phenomena enabled by the synergy of structured light and structured materials. Finally, we outline promising directions for applications of structured light beams and their interactions with engineered nanostructures.
诸如光操控、数据处理、传感、显微镜学及通信等光学技术的迅速发展,需要新的自由度来在空间和时间上塑造光束,这超越了传统上使用的空间均匀的幅度、相位和偏振。在空间和时间上对光进行结构化已被证明为光的应用科学和基础科学都带来了新机遇。纳米光子学的迅速发展开辟了“设计”超紧凑、多功能光学纳米结构的新途径,例如光学二维超表面或三维超材料,它们为光束整形和操控提供了新方法。在此,我们回顾结构化光与物质相互作用领域的近期进展,重点关注全介质纳米结构。首先,我们介绍奇异光学的概念,然后讨论其他几类空间和时间上结构化的光束。接下来,我们总结光子平台设计与优化方面的近期进展,然后概述结构化光与结构化材料协同作用所带来的一些新现象。最后,我们概述结构化光束及其与工程纳米结构相互作用的应用的前景方向。