Suppr超能文献

使用耦合的法诺-洛伦兹超表面实现相干可控太赫兹表面等离激元诱导透明

Coherently controllable terahertz plasmon-induced transparency using a coupled Fano-Lorentzian metasurface.

作者信息

Zhao Zhenyu, Gu Zhidong, Ako Rajour Tanyi, Zhao Hui, Sriram Sharath

出版信息

Opt Express. 2020 May 11;28(10):15573-15586. doi: 10.1364/OE.393714.

Abstract

Metamaterials have been engineered to achieve electromagnetically induced transparency (EIT)-like behavior, analogous to those in quantum optical systems. These meta-devices are opening new paradigms in terahertz communication, ultra-sensitive sensing and EIT-like anti-reflection. The controlled coupling between a sub-radiant and a super-radiant particle in the unit cells of these metamaterial can enable multiple narrow plasmon induced transparency (PIT) windows over a broad band, with considerable group delay of electromagnetic field (slow light effect). Phase coherence between these PIT windows is highly desired for next-generation multichannel communication network. Herein, we numerically and experimentally validate a controllable frequency hopping mechanism between "slow light" windows in the terahertz (THz) regime. The effective media are composed of plasmonic "molecules" in which an asymmetric split-ring resonator (ASRR) or Fano resonator is displaced on the side of a cut-wire (Lorentz oscillator). Two metasurfaces where ASRR is on opposite side of the cut-wire are investigated. In these two cases, the proximity of the cut-wire to the gap on the ASRR having asymmetry is different. On one side, when the gap is nearer to the cut wire, displacing the ASRR along the cut-wire, produces only one narrow transparency window at 0.8 THz, corresponding to 20 ps group delay. When the ASRR is positioned on the opposite side, such that the gap is further, two transparency windows are observed when the ASRR is displaced along the cut-wire. That is, the transparency window hops from 0.8 THz to 1.2 THz. This corresponds to an increase from 20 to 30 ps in slow light effect. Numerical simulations suggest these single or multiple PIT windows occur if the couplings between the plasmonic modes in the different arrangements are either in-phase or out-of-phase, respectively.

摘要

超材料已被设计用于实现类似于量子光学系统中的电磁诱导透明(EIT)行为。这些超材料器件正在为太赫兹通信、超灵敏传感和类EIT抗反射开启新的范例。这些超材料单元胞中一个亚辐射粒子和一个超辐射粒子之间的可控耦合能够在宽频带上实现多个窄的表面等离激元诱导透明(PIT)窗口,具有相当可观的电磁场群延迟(慢光效应)。下一代多通道通信网络非常需要这些PIT窗口之间的相位相干性。在此,我们通过数值模拟和实验验证了太赫兹(THz)频段“慢光”窗口之间的可控跳频机制。有效介质由等离子体“分子”组成,其中一个不对称开口环谐振器(ASRR)或法诺谐振器位于切割线(洛伦兹振荡器)一侧。研究了ASRR位于切割线相对两侧的两种超表面。在这两种情况下,切割线与具有不对称性的ASRR上的间隙之间的距离不同。一方面,当间隙更靠近切割线时,沿切割线移动ASRR,仅在0.8太赫兹处产生一个窄的透明窗口,对应20皮秒的群延迟。当ASRR位于相反一侧,使得间隙更远时,沿切割线移动ASRR时会观察到两个透明窗口。也就是说,透明窗口从0.8太赫兹跳变到1.2太赫兹。这对应着慢光效应从20皮秒增加到30皮秒。数值模拟表明,如果不同排列中等离子体模式之间的耦合分别为同相或异相,则会出现这些单个或多个PIT窗口。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验