Suppr超能文献

视觉对连续支撑面平移过程中姿势行为的贡献。

Contribution of vision to postural behaviors during continuous support-surface translations.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA.

出版信息

Exp Brain Res. 2014 Jan;232(1):169-80. doi: 10.1007/s00221-013-3729-4. Epub 2013 Oct 17.

Abstract

During standing balance, kinematics of postural behaviors have been previously observed to change across visual conditions, perturbation amplitudes, or perturbation frequencies. However, experimental limitations only allowed for independent investigation of such parameters. Here, we adapted a pseudorandom ternary sequence (PRTS) perturbation previously used in rotational support-surface perturbations (Peterka in J Neurophysiol 88(3):1097-1118, 2002) to a translational paradigm, allowing us to concurrently examine the effects of vision, perturbation amplitude, and frequency on balance control. Additionally, the unpredictable PRTS perturbation eliminated effects of feedforward adaptations typical of responses to sinusoidal stimuli. The PRTS perturbation contained a wide spectral bandwidth (0.08-3.67 Hz) and was scaled to 4 different peak-to-peak amplitudes (3-24 cm). Root mean square (RMS) of hip displacement and velocity increased relative to RMS ankle displacement and velocity in the absence of vision across all subjects, especially at higher perturbation amplitudes. Gain and phase lag of center of mass (CoM) sway relative to the perturbation also increased with perturbation frequency; phase lag further increased when vision was absent. Together, our results suggest that visual input, perturbation amplitude, and perturbation frequency can concurrently and independently modulate postural strategies during standing balance. Moreover, each factor contributes to the difficulty of maintaining postural stability; increased difficulty evokes a greater reliance on hip motion. Finally, despite high degrees of joint angle variation across subjects, CoM measures were relatively similar across subjects, suggesting that the CoM is an important controlled variable for balance.

摘要

在站立平衡中,姿势行为的运动学已被先前观察到在视觉条件、扰动幅度或扰动频率下发生变化。然而,实验限制仅允许对这些参数进行独立研究。在这里,我们改编了先前在旋转支撑表面扰动中使用的伪随机三进制序列(PRTS)扰动(Peterka in J Neurophysiol 88(3):1097-1118, 2002)到平移范式中,使我们能够同时检查视觉、扰动幅度和频率对平衡控制的影响。此外,不可预测的 PRTS 扰动消除了对正弦刺激反应中典型的前馈适应的影响。PRTS 扰动包含宽的光谱带宽(0.08-3.67 Hz),并按 4 个不同的峰峰值幅度(3-24 cm)进行缩放。在所有受试者中,与无视觉时相比,髋部位移和速度的 RMS 相对于踝关节位移和速度增加,尤其是在较高的扰动幅度下。质心(CoM)摆动相对于扰动的增益和相位滞后也随扰动频率增加;当没有视觉时,相位滞后进一步增加。总之,我们的结果表明,视觉输入、扰动幅度和扰动频率可以同时且独立地调节站立平衡时的姿势策略。此外,每个因素都有助于增加维持姿势稳定性的难度;难度增加会导致对髋部运动的更大依赖。最后,尽管各受试者的关节角度变化很大,但 CoM 测量值在受试者之间相对相似,这表明 CoM 是平衡的一个重要控制变量。

相似文献

1
Contribution of vision to postural behaviors during continuous support-surface translations.
Exp Brain Res. 2014 Jan;232(1):169-80. doi: 10.1007/s00221-013-3729-4. Epub 2013 Oct 17.
2
Emergence of postural patterns as a function of vision and translation frequency.
J Neurophysiol. 1999 May;81(5):2325-39. doi: 10.1152/jn.1999.81.5.2325.
3
Influence of stance width on frontal plane postural dynamics and coordination in human balance control.
J Neurophysiol. 2010 Aug;104(2):1103-18. doi: 10.1152/jn.00916.2009. Epub 2010 Apr 28.
4
Assessing postural control and postural control strategy in diabetes patients using innovative and wearable technology.
J Diabetes Sci Technol. 2010 Jul 1;4(4):780-91. doi: 10.1177/193229681000400403.
5
Motor equivalent control of the center of mass in response to support surface perturbations.
Exp Brain Res. 2007 Jun;180(1):163-79. doi: 10.1007/s00221-006-0848-1. Epub 2007 Jan 26.
6
Dynamics of inter-modality re-weighting during human postural control.
Exp Brain Res. 2012 Nov;223(1):99-108. doi: 10.1007/s00221-012-3244-z. Epub 2012 Sep 11.
8
Identification of human balance control responses to visual inputs using virtual reality.
J Neurophysiol. 2022 Apr 1;127(4):1159-1170. doi: 10.1152/jn.00283.2021. Epub 2022 Mar 30.
10
Postural control under visual and proprioceptive perturbations during double and single limb stances: insights for balance training.
J Bodyw Mov Ther. 2012 Apr;16(2):224-9. doi: 10.1016/j.jbmt.2011.02.003. Epub 2011 Apr 9.

引用本文的文献

2
Development and validation of a two-dimensional pseudorandom balance perturbation test.
Front Hum Neurosci. 2024 Dec 6;18:1471132. doi: 10.3389/fnhum.2024.1471132. eCollection 2024.
3
Vision Evaluation Tools for Adults With Acquired Brain Injury: A Scoping Review.
Can J Occup Ther. 2021 Dec;88(4):340-351. doi: 10.1177/00084174211042955. Epub 2021 Oct 18.
4
Visual Modulation of Human Responses to Support Surface Translation.
Front Hum Neurosci. 2021 Mar 4;15:615200. doi: 10.3389/fnhum.2021.615200. eCollection 2021.
7
Visual feedback is not necessary for recalibrating the vestibular contribution to the dynamic phase of a perturbation recovery response.
Exp Brain Res. 2019 Sep;237(9):2185-2196. doi: 10.1007/s00221-019-05571-6. Epub 2019 Jun 18.
8
Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation?
Exp Brain Res. 2018 Jun;236(6):1689-1698. doi: 10.1007/s00221-018-5249-8. Epub 2018 Apr 5.
9
Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes.
Front Neurol. 2017 Mar 27;8:112. doi: 10.3389/fneur.2017.00112. eCollection 2017.
10
Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision.
Front Hum Neurosci. 2016 Aug 30;10:419. doi: 10.3389/fnhum.2016.00419. eCollection 2016.

本文引用的文献

2
Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.
J Neurophysiol. 2011 Aug;106(2):999-1015. doi: 10.1152/jn.00549.2010. Epub 2011 Jun 8.
3
Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control.
J Neurophysiol. 2011 Jul;106(1):437-48. doi: 10.1152/jn.00010.2011. Epub 2011 May 4.
5
Influence of stance width on frontal plane postural dynamics and coordination in human balance control.
J Neurophysiol. 2010 Aug;104(2):1103-18. doi: 10.1152/jn.00916.2009. Epub 2010 Apr 28.
6
Dynamic reweighting of visual and vestibular cues during self-motion perception.
J Neurosci. 2009 Dec 9;29(49):15601-12. doi: 10.1523/JNEUROSCI.2574-09.2009.
7
Neuromechanical tuning of nonlinear postural control dynamics.
Chaos. 2009 Jun;19(2):026111. doi: 10.1063/1.3142245.
8
The time-delayed inverted pendulum: implications for human balance control.
Chaos. 2009 Jun;19(2):026110. doi: 10.1063/1.3141429.
9
Influence of visual scene velocity on segmental kinematics during stance.
Gait Posture. 2009 Aug;30(2):211-6. doi: 10.1016/j.gaitpost.2009.05.001. Epub 2009 Jun 7.
10
Center of mass control and multi-segment coordination in children during quiet stance.
Exp Brain Res. 2009 Jul;196(3):329-39. doi: 10.1007/s00221-009-1852-z. Epub 2009 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验