Suppr超能文献

细菌感染引起的肠道微生物群扰动会影响砷的生物转化。

Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation.

作者信息

Lu Kun, Cable Peter Hans, Abo Ryan Phillip, Ru Hongyu, Graffam Michelle E, Schlieper Katherine Ann, Parry Nicola M A, Levine Stuart, Bodnar Wanda M, Wishnok John S, Styblo Miroslav, Swenberg James A, Fox James G, Tannenbaum Steven R

机构信息

Department of Biological Engineering, ‡Department of Biology, §Division of Comparative Medicine, and ∥Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

Chem Res Toxicol. 2013 Dec 16;26(12):1893-903. doi: 10.1021/tx4002868. Epub 2013 Nov 18.

Abstract

Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several underlying mechanisms, such as genetic polymorphisms and epigenetics, have been proposed, as these factors closely impact the individuals' capacity to metabolize arsenic. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that perturbations of the gut microbial communities affect the spectrum of metabolized arsenic species and subsequent toxicological effects. In this study, we used an animal model with an altered gut microbiome induced by bacterial infection, 16S rRNA gene sequencing, and inductively coupled plasma mass spectrometry-based arsenic speciation to examine the effect of gut microbiome perturbations on the biotransformation of arsenic. Metagenomics sequencing revealed that bacterial infection significantly perturbed the gut microbiome composition in C57BL/6 mice, which in turn resulted in altered spectra of arsenic metabolites in urine, with inorganic arsenic species and methylated and thiolated arsenic being perturbed. These data clearly illustrated that gut microbiome phenotypes significantly affected arsenic metabolic reactions, including reduction, methylation, and thiolation. These findings improve our understanding of how infectious diseases and environmental exposure interact and may also provide novel insight regarding the gut microbiome composition as a new risk factor of individual susceptibility to environmental chemicals.

摘要

全世界有大量人群接触砷,并且砷已与一系列人类疾病相关联,包括皮肤癌、膀胱癌、肺癌和肝癌、糖尿病以及心血管疾病。此外,个体对砷诱导疾病的易感性存在很大差异,这通常与不同的砷代谢模式有关。已经提出了几种潜在机制,如基因多态性和表观遗传学,因为这些因素密切影响个体代谢砷的能力。在这种情况下,肠道微生物群在直接代谢砷和引发不同器官的全身反应中的作用增加了肠道微生物群落扰动影响砷代谢物种类谱和后续毒理学效应的可能性。在本研究中,我们使用了一种动物模型,该模型通过细菌感染、16S rRNA基因测序以及基于电感耦合等离子体质谱的砷形态分析来诱导肠道微生物群改变,以研究肠道微生物群扰动对砷生物转化的影响。宏基因组学测序显示,细菌感染显著扰乱了C57BL/6小鼠的肠道微生物群组成,这反过来又导致尿液中砷代谢物谱的改变,无机砷物种以及甲基化和硫醇化砷受到扰动。这些数据清楚地表明,肠道微生物群表型显著影响砷的代谢反应,包括还原、甲基化和硫醇化。这些发现增进了我们对传染病和环境暴露如何相互作用的理解,也可能为肠道微生物群组成作为个体对环境化学物质易感性的新风险因素提供新的见解。

相似文献

1
Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation.
Chem Res Toxicol. 2013 Dec 16;26(12):1893-903. doi: 10.1021/tx4002868. Epub 2013 Nov 18.
2
Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.
Chem Res Toxicol. 2014 Feb 17;27(2):172-4. doi: 10.1021/tx400454z. Epub 2014 Feb 3.
3
Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis.
Environ Health Perspect. 2014 Mar;122(3):284-91. doi: 10.1289/ehp.1307429. Epub 2014 Jan 10.
4
Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome.
Chem Res Toxicol. 2016 Jun 20;29(6):949-51. doi: 10.1021/acs.chemrestox.6b00066. Epub 2016 Jun 9.
5
Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice.
Arch Toxicol. 2019 Jan;93(1):25-35. doi: 10.1007/s00204-018-2332-7. Epub 2018 Oct 24.
6
The gut microbiome and arsenic-induced disease-iAs metabolism in mice.
Curr Environ Health Rep. 2021 Jun;8(2):89-97. doi: 10.1007/s40572-021-00305-9. Epub 2021 Apr 14.
8
Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract.
Environ Health Perspect. 2014 Aug;122(8):817-22. doi: 10.1289/ehp.1307759. Epub 2014 May 9.
10
HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota.
Biomed Chromatogr. 2012 Apr;26(4):524-33. doi: 10.1002/bmc.1700. Epub 2011 Sep 8.

引用本文的文献

1
Intestinal microbiota dysbiosis contributes to the liver damage in subchronic arsenic-exposed mice.
Acta Biochim Biophys Sin (Shanghai). 2024 Oct 8;56(12):1774-1788. doi: 10.3724/abbs.2024131.
2
Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes.
ACS Biomater Sci Eng. 2024 Mar 11;10(3):1461-1472. doi: 10.1021/acsbiomaterials.3c01678. Epub 2024 Feb 5.
4
Prenatal exposures to endocrine disrupting chemicals: The role of multi-omics in understanding toxicity.
Mol Cell Endocrinol. 2023 Dec 1;578:112046. doi: 10.1016/j.mce.2023.112046. Epub 2023 Aug 19.
5
Contribution of gut bacteria to arsenic metabolism in the first year of life in a prospective birth cohort.
Environ Res. 2022 Nov;214(Pt 4):114099. doi: 10.1016/j.envres.2022.114099. Epub 2022 Aug 23.
6
Impact of antibiotics on the human microbiome and consequences for host health.
Microbiologyopen. 2022 Feb;11(1):e1260. doi: 10.1002/mbo3.1260.
7
The Need to Unravel Arsenolipid Transformations in Humans.
DNA Cell Biol. 2022 Jan;41(1):64-70. doi: 10.1089/dna.2021.0476. Epub 2021 Dec 23.
8
Nutrition, one-carbon metabolism and arsenic methylation.
Toxicology. 2021 Jun 15;457:152803. doi: 10.1016/j.tox.2021.152803. Epub 2021 Apr 24.
9
The gut microbiome and arsenic-induced disease-iAs metabolism in mice.
Curr Environ Health Rep. 2021 Jun;8(2):89-97. doi: 10.1007/s40572-021-00305-9. Epub 2021 Apr 14.
10
Introducing the ArsR-Regulated Arsenic Stimulon.
Front Microbiol. 2021 Mar 3;12:630562. doi: 10.3389/fmicb.2021.630562. eCollection 2021.

本文引用的文献

1
Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy.
PLoS One. 2013;8(4):e60042. doi: 10.1371/journal.pone.0060042. Epub 2013 Apr 2.
3
Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation.
J Biochem Mol Toxicol. 2013 Feb;27(2):106-15. doi: 10.1002/jbt.21462. Epub 2013 Jan 11.
4
Genomic variation landscape of the human gut microbiome.
Nature. 2013 Jan 3;493(7430):45-50. doi: 10.1038/nature11711. Epub 2012 Dec 5.
5
Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response.
Environ Health Perspect. 2013 Feb;121(2):237-43. doi: 10.1289/ehp.1205731. Epub 2012 Dec 5.
6
Arsenic exposure, diabetes prevalence, and diabetes control in the Strong Heart Study.
Am J Epidemiol. 2012 Nov 15;176(10):865-74. doi: 10.1093/aje/kws153. Epub 2012 Oct 24.
8
A metagenome-wide association study of gut microbiota in type 2 diabetes.
Nature. 2012 Oct 4;490(7418):55-60. doi: 10.1038/nature11450. Epub 2012 Sep 26.
9
Functional interactions between the gut microbiota and host metabolism.
Nature. 2012 Sep 13;489(7415):242-9. doi: 10.1038/nature11552.
10
The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic.
Toxicol Appl Pharmacol. 2012 Nov 1;264(3):439-50. doi: 10.1016/j.taap.2012.08.022. Epub 2012 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验