Suppr超能文献

基于知识的自动重建人脑白质束方法:基于路径搜索的动态规划方法

Knowledge-based automated reconstruction of human brain white matter tracts using a path-finding approach with dynamic programming.

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China.

Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neuroimage. 2014 Mar;88:271-81. doi: 10.1016/j.neuroimage.2013.10.011. Epub 2013 Oct 14.

Abstract

It has been shown that the anatomy of major white matter tracts can be delineated using diffusion tensor imaging (DTI) data. Tract reconstruction, however, often suffers from a large number of false-negative results when a simple line propagation algorithm is used. This limits the application of this technique to only the core of prominent white matter tracts. By employing probabilistic path-generation algorithms, connectivity between a larger number of anatomical regions can be studied, but an increase in the number of false-positive results is inevitable. One of the causes of the inaccuracy is the complex axonal anatomy within a voxel; however, high-angular resolution (HAR) methods have been proposed to ameliorate this limitation. However, HAR data are relatively rare due to the long scan times required and the low signal-to-noise ratio. In this study, we tested a probabilistic path-finding method in which two anatomical regions with known connectivity were pre-defined and a path that maximized agreement with the DTI data was searched. To increase the accuracy of the trajectories, knowledge-based anatomical constraints were applied. The reconstruction protocols were tested using DTI data from 19 normal subjects to examine test-retest reproducibility and cross-subject variability. Fifty-two tracts were found to be reliably reconstructed using this approach, which can be viewed on our website.

摘要

已经证明,使用扩散张量成像(DTI)数据可以描绘主要白质束的解剖结构。然而,当使用简单的直线传播算法时,束重建经常会出现大量的假阴性结果。这限制了该技术仅应用于突出白质束的核心。通过采用概率路径生成算法,可以研究更多解剖区域之间的连通性,但假阳性结果的数量不可避免地会增加。准确性不高的原因之一是体素内复杂的轴突解剖结构;然而,已经提出了高角分辨率(HAR)方法来改善这一限制。然而,由于所需的扫描时间长且信噪比低,HAR 数据相对较少。在这项研究中,我们测试了一种概率路径查找方法,其中预先定义了两个具有已知连通性的解剖区域,并搜索了与 DTI 数据最大一致的路径。为了提高轨迹的准确性,应用了基于知识的解剖约束。使用来自 19 名正常受试者的 DTI 数据测试了重建协议,以检查测试-重测可重复性和跨受试者变异性。使用这种方法可靠地重建了 52 条束,可在我们的网站上查看。

相似文献

引用本文的文献

7
Tracking and validation techniques for topographically organized tractography.拓扑组织束追踪的跟踪和验证技术。
Neuroimage. 2018 Nov 1;181:64-84. doi: 10.1016/j.neuroimage.2018.06.071. Epub 2018 Jul 2.

本文引用的文献

4
Diffusion tensor imaging and beyond.扩散张量成像及其他。
Magn Reson Med. 2011 Jun;65(6):1532-56. doi: 10.1002/mrm.22924. Epub 2011 Apr 5.
6
Multi-parametric neuroimaging reproducibility: a 3-T resource study.多参数神经影像学可重复性:3-T 资源研究。
Neuroimage. 2011 Feb 14;54(4):2854-66. doi: 10.1016/j.neuroimage.2010.11.047. Epub 2010 Nov 20.
8
Combinatorial fiber-tracking of the human brain.人类大脑的组合式纤维追踪
Neuroimage. 2009 Nov 15;48(3):532-40. doi: 10.1016/j.neuroimage.2009.05.086. Epub 2009 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验