Suppr超能文献

可穿戴运动传感器,可连续测量真实世界中的身体活动。

Wearable motion sensors to continuously measure real-world physical activities.

机构信息

Geffen UCLA School of Medicine, University of California Los Angeles, Los Angeles, California, USA.

出版信息

Curr Opin Neurol. 2013 Dec;26(6):602-8. doi: 10.1097/WCO.0000000000000026.

Abstract

PURPOSE OF REVIEW

Rehabilitation for sensorimotor impairments aims to improve daily activities, walking, exercise, and motor skills. Monitoring of practice and measuring outcomes, however, is usually restricted to laboratory-based procedures and self-reports. Mobile health devices may reverse these confounders of daily care and research trials.

RECENT FINDINGS

Wearable, wireless motion sensor data, analyzed by activity pattern-recognition algorithms, can describe the type, quantity, and quality of mobility-related activities in the community. Data transmission from the sensors to a cell phone and the Internet enable continuous monitoring. Remote access to laboratory quality data about walking speed, duration and distance, gait asymmetry and smoothness of movements, as well as cycling, exercise, and skills practice, opens new opportunities to engage patients in progressive, personalized therapies with feedback about the performance. Clinical trial designs will be able to include remote verification of the integrity of complex physical interventions and compliance with practice, as well as capture repeated, ecologically sound, ratio scale outcome measures.

SUMMARY

Given the progressively falling cost of miniaturized wearable gyroscopes, accelerometers, and other physiologic sensors, as well as inexpensive data transmission, sensing systems may become as ubiquitous as cell phones for healthcare. Neurorehabilitation can develop these mobile health platforms for daily care and clinical trials to improve exercise and fitness, skills learning, and physical functioning.

摘要

目的综述:感觉运动功能障碍的康复旨在提高日常活动、步行、运动和运动技能。然而,实践监测和结果测量通常仅限于基于实验室的程序和自我报告。移动健康设备可能会改变日常护理和研究试验的这些混杂因素。

最近发现:可穿戴、无线运动传感器数据通过活动模式识别算法进行分析,可以描述社区中与移动性相关的活动类型、数量和质量。传感器到手机和互联网的数据传输可实现连续监测。远程访问关于步行速度、持续时间和距离、步态不对称和运动平滑度以及骑自行车、运动和技能练习的实验室质量数据,为患者提供了新的机会,使他们能够参与渐进式、个性化的治疗,并获得关于表现的反馈。临床试验设计将能够远程验证复杂物理干预的完整性和实践的依从性,并捕获重复的、生态合理的、比率量表的结果测量。

总结:鉴于微型化的陀螺仪、加速度计和其他生理传感器以及廉价的数据传输成本不断降低,传感系统可能会像手机一样普及,成为医疗保健的一部分。神经康复可以开发这些移动健康平台,用于日常护理和临床试验,以提高运动和健身、技能学习和身体功能。

相似文献

5
A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training.家庭康复物联网增强运动技能与运动训练
Neurorehabil Neural Repair. 2017 Mar;31(3):217-227. doi: 10.1177/1545968316680490. Epub 2016 Nov 24.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

7
Consensus Paper: Ataxic Gait.共识文件:共济失调步态。
Cerebellum. 2023 Jun;22(3):394-430. doi: 10.1007/s12311-022-01373-9. Epub 2022 Apr 12.
10
Estimating Movement Smoothness From Inertial Measurement Units.通过惯性测量单元估计运动平滑度
Front Bioeng Biotechnol. 2021 Jan 14;8:558771. doi: 10.3389/fbioe.2020.558771. eCollection 2020.

本文引用的文献

3
Surrogate outcomes in clinical trials: a cautionary tale.临床试验中的替代结局:一则警示故事。
JAMA Intern Med. 2013 Apr 22;173(8):611-2. doi: 10.1001/jamainternmed.2013.3037.
6
Scaling up mHealth: where is the evidence?移动医疗的规模扩大:证据在哪里?
PLoS Med. 2013;10(2):e1001382. doi: 10.1371/journal.pmed.1001382. Epub 2013 Feb 12.
8
H_pe for mHealth: more "y" or "o" on the horizon?移动医疗的 H-pe :更多的“是”还是“否”?
Int J Med Inform. 2013 May;82(5):467-9. doi: 10.1016/j.ijmedinf.2012.11.016. Epub 2012 Dec 29.
9
Systematic review of teleneurology: methodology.系统综述远程神经病学:方法学。
Front Neurol. 2012 Nov 8;3:156. doi: 10.3389/fneur.2012.00156. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验