Suppr超能文献

基于单目深度图像的高效人体姿态估计。

Efficient human pose estimation from single depth images.

机构信息

Microsoft Research, Cambridge.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Dec;35(12):2821-40. doi: 10.1109/TPAMI.2012.241.

Abstract

We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training images. This allows us to learn models that are largely invariant to factors such as pose, body shape, field-of-view cropping, and clothing. Our first approach employs an intermediate body parts representation, designed so that an accurate per-pixel classification of the parts will localize the joints of the body. The second approach instead directly regresses the positions of body joints. By using simple depth pixel comparison features and parallelizable decision forests, both approaches can run super-real time on consumer hardware. Our evaluation investigates many aspects of our methods, and compares the approaches to each other and to the state of the art. Results on silhouettes suggest broader applicability to other imaging modalities.

摘要

我们描述了两种新的人体姿态估计方法。这两种方法都可以快速准确地从单张深度图像中预测身体关节的 3D 位置,而无需使用任何时间信息。这两种方法的关键都在于使用了大量真实且高度多样化的合成训练图像集。这使我们能够学习到对姿态、体型、视场裁剪和衣物等因素具有很大不变性的模型。我们的第一种方法采用了中间的身体部位表示法,其设计目的是通过对部位进行精确的逐像素分类来定位身体的关节。第二种方法则直接回归身体关节的位置。通过使用简单的深度像素比较特征和可并行化决策森林,这两种方法都可以在消费级硬件上实现超实时运行。我们的评估研究了我们方法的许多方面,并将这些方法相互比较,以及与最新技术进行比较。在剪影上的结果表明,它们更广泛地适用于其他成像模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验