Suppr超能文献

基于 ST-GCN 和 YOLO 的建筑工人交互行为识别研究。

Study on the Interaction Behaviors Identification of Construction Workers Based on ST-GCN and YOLO.

机构信息

Department of Safety Engineering, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.

出版信息

Sensors (Basel). 2023 Jul 11;23(14):6318. doi: 10.3390/s23146318.

Abstract

The construction industry is accident-prone, and unsafe behaviors of construction workers have been identified as a leading cause of accidents. One important countermeasure to prevent accidents is monitoring and managing those unsafe behaviors. The most popular way of detecting and identifying workers' unsafe behaviors is the computer vision-based intelligent monitoring system. However, most of the existing research or products focused only on the workers' behaviors (i.e., motions) recognition, limited studies considered the interaction between man-machine, man-material or man-environments. Those interactions are very important for judging whether the workers' behaviors are safe or not, from the standpoint of safety management. This study aims to develop a new method of identifying construction workers' unsafe behaviors, i.e., unsafe interaction between man-machine/material, based on ST-GCN (Spatial Temporal Graph Convolutional Networks) and YOLO (You Only Look Once), which could provide more direct and valuable information for safety management. In this study, two trained YOLO-based models were, respectively, used to detect safety signs in the workplace, and objects that interacted with workers. Then, an ST-GCN model was trained to detect and identify workers' behaviors. Lastly, a decision algorithm was developed considering interactions between man-machine/material, based on YOLO and ST-GCN results. Results show good performance of the developed method, compared to only using ST-GCN, the accuracy was significantly improved from 51.79% to 85.71%, 61.61% to 99.11%, and 58.04% to 100.00%, respectively, in the identification of the following three kinds of behaviors, throwing (throwing hammer, throwing bottle), operating (turning on switch, putting bottle), and crossing (crossing railing and crossing obstacle). The findings of the study have some practical implications for safety management, especially workers' behavior monitoring and management.

摘要

建筑行业事故频发,建筑工人的不安全行为已被确定为事故的主要原因之一。防止事故的一个重要对策是监测和管理这些不安全行为。检测和识别工人不安全行为的最流行方法是基于计算机视觉的智能监控系统。然而,大多数现有的研究或产品仅关注工人的行为(即动作)识别,很少有研究考虑人机、人机材料或人机环境之间的相互作用。从安全管理的角度来看,这些相互作用对于判断工人的行为是否安全非常重要。本研究旨在开发一种新的识别建筑工人不安全行为的方法,即基于 ST-GCN(时空图卷积网络)和 YOLO(只看一次)的人机/材料之间的不安全相互作用,为安全管理提供更直接和有价值的信息。在本研究中,分别使用两个经过训练的基于 YOLO 的模型来检测工作场所的安全标志和与工人交互的物体。然后,训练一个 ST-GCN 模型来检测和识别工人的行为。最后,根据 YOLO 和 ST-GCN 的结果,开发了一种考虑人机/材料相互作用的决策算法。结果表明,与仅使用 ST-GCN 相比,所开发方法的性能较好,在识别以下三种行为时,准确率分别从 51.79%显著提高到 85.71%、61.61%提高到 99.11%、58.04%提高到 100.00%:投掷(投掷锤子、投掷瓶子)、操作(打开开关、放置瓶子)和穿越(穿越栏杆和穿越障碍物)。本研究的结果对安全管理具有一定的实际意义,特别是对工人行为的监测和管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验