迭代量化:一种用于大规模图像检索的学习二进制代码的普罗克汝斯忒斯方法。

Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval.

机构信息

University of Carolina at Chapel Hill, Chapel Hill.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Dec;35(12):2916-29. doi: 10.1109/TPAMI.2012.193.

Abstract

This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.

摘要

本文针对在大规模图像集合中进行高效相似性搜索的问题,研究了学习保相似性二进制代码的问题。我们将这个问题表述为寻找零中心数据的旋转,以最小化将该数据映射到零中心二进制超立方体顶点的量化误差,并提出了一种简单而有效的交替最小化算法来完成这项任务。这种算法被称为迭代量化(ITQ),它与多类谱聚类和正交 Procrustes 问题有关,既可以与无监督数据嵌入(如 PCA)一起使用,也可以与监督嵌入(如典型相关分析(CCA))一起使用。生成的二进制代码明显优于其他几种最先进的方法。我们还表明,在 PCA 或 CCA 之前使用非线性核映射对数据进行转换可以进一步提高性能。最后,我们展示了 ITQ 在学习 ImageNet 数据集上的二进制属性或“类内词”的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索