Suppr超能文献

基于光传感器网络的图像检索在线哈希算法。

An Online Hashing Algorithm for Image Retrieval Based on Optical-Sensor Network.

机构信息

Department of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.

Ministry of Education Key Laboratory of Cognitive Radio and Information Processing, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Sensors (Basel). 2023 Feb 25;23(5):2576. doi: 10.3390/s23052576.

Abstract

Online hashing is a valid storage and online retrieval scheme, which is meeting the rapid increase in data in the optical-sensor network and the real-time processing needs of users in the era of big data. Existing online-hashing algorithms rely on data tags excessively to construct the hash function, and ignore the mining of the structural features of the data itself, resulting in a serious loss of the image-streaming features and the reduction in retrieval accuracy. In this paper, an online hashing model that fuses global and local dual semantics is proposed. First, to preserve the local features of the streaming data, an anchor hash model, which is based on the idea of manifold learning, is constructed. Second, a global similarity matrix, which is used to constrain hash codes is built by the balanced similarity between the newly arrived data and previous data, which makes hash codes retain global data features as much as possible. Then, under a unified framework, an online hash model that integrates global and local dual semantics is learned, and an effective discrete binary-optimization solution is proposed. A large number of experiments on three datasets, including CIFAR10, MNIST and Places205, show that our proposed algorithm improves the efficiency of image retrieval effectively, compared with several existing advanced online-hashing algorithms.

摘要

在线哈希是一种有效的存储和在线检索方案,它满足了大数据时代光传感器网络中数据的快速增长和用户对实时处理的需求。现有的在线哈希算法过度依赖于数据标签来构建哈希函数,而忽略了数据本身结构特征的挖掘,导致图像流特征严重丢失,检索精度降低。本文提出了一种融合全局和局部双重语义的在线哈希模型。首先,为了保留流数据的局部特征,构建了一种基于流形学习思想的锚哈希模型。其次,通过新到达的数据与之前数据之间的平衡相似度,构建了一个全局相似性矩阵,用于约束哈希码,使哈希码尽可能保留全局数据特征。然后,在统一框架下,学习了一个融合全局和局部双重语义的在线哈希模型,并提出了一种有效的离散二进制优化解决方案。在包括 CIFAR10、MNIST 和 Places205 在内的三个数据集上进行了大量实验,结果表明,与几种现有的先进在线哈希算法相比,所提出的算法有效地提高了图像检索的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9318/10007520/e05d62b6cff1/sensors-23-02576-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验