IEEE Trans Image Process. 2014 May;23(5):2047-57. doi: 10.1109/TIP.2014.2312283.
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
近年来,人们对将视觉特征映射到紧凑二进制代码以应用于大规模图像集合越来越感兴趣。将高维数据编码为紧凑二进制代码可以降低存储的内存成本。此外,由于相似性的计算可以通过汉明距离有效地测量,因此它有利于计算效率。在本文中,我们提出了一种新的灵活尺度不变特征变换(SIFT)二值化(FSB)算法,用于大规模图像搜索。FSB 算法探索 SIFT 描述符的幅度模式。它是无监督的,生成的二进制代码是无偏置的。此外,我们提出了一种新的搜索策略,基于二进制 SIFT 空间和原始 SIFT 空间中的交叉索引来查找目标特征。我们在两个公开发布的数据集上评估了我们的方法。在大规模部分重复图像检索系统上的实验证明了所提出算法的有效性和效率。