Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371 Singapore.
Science. 2013 Oct 18;342(6156):344-7. doi: 10.1126/science.1243167.
Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.
低温溶液处理的光伏器件由于激子或电子-空穴扩散长度较差(通常约为 10 纳米),因此效率较低。最近在各种配置下报告的高效 CH3NH3PbI3 基太阳能电池引起了人们对理解这些材料基本光物理机制的强烈兴趣。通过应用飞秒瞬态光学光谱学来研究与选择性电子或选择性空穴提取材料界面的双层结构,我们已经发现了在溶液处理的 CH3NH3PbI3 中至少 100 纳米长的平衡长程电子-空穴扩散长度的具体证据。这些体系的高光转换效率源于可比的光吸收长度和电荷载流子扩散长度,超越了溶液处理半导体的传统限制。