Suppr超能文献

双功能4,5-二碘咪唑界面工程实现了高效倒置钙钛矿太阳能电池的缺陷钝化和结晶控制同步。

Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells.

作者信息

Gao Huaxi, Zhang Yu, Ghani Ihtesham, Xin Min, Khan Danish, Wang Junyu, Lu Di, Cao Tao, Chen Wei, Yang Xin, Tang Zeguo

机构信息

School of Energy and Environmental Sciences, Yunnan Normal University, Juxian Road 768, Kunming 650500, China.

The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China.

出版信息

Nanomaterials (Basel). 2025 May 20;15(10):766. doi: 10.3390/nano15100766.

Abstract

Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer engineering strategy by introducing 4,5-diiodoimidazole (4,5-Di-I) at the Me-4PACz/perovskite interface. This approach uniquely addresses two fundamental limitations of SAM-based interfaces: the insufficient defect passivation capability of conventional Me-4PACz due to steric hindrance effects and the poor perovskite wettability on hydrophobic SAM surfaces that exacerbates interfacial voids. The imidazole derivatives not only form strong Pb-N coordination bonds with undercoordinated Pb but also modulate the surface energy of Me-4PACz, enabling the growth of pinhole-free perovskite films with preferential crystal orientation. The champion device with 4,5-Di-I modification achieves a power conversion efficiency (PCE) of 24.10%, with a V enhancement from 1.12 V to 1.14 V, while maintaining 91% of initial PCE after 1300 h in N₂ atmosphere (25 °C), demonstrating superior stability under ISOS-L-2 protocols. This work establishes a universal strategy for interfacial multifunctionality design, proving that simultaneous defect suppression and crystallization control can break the long-standing trade-off between efficiency and stability in solution-processed photovoltaics.

摘要

尽管钙钛矿太阳能电池(PSC)的效率迅速提高,但自组装单分子层(SAM)与钙钛矿之间的掩埋界面处的非辐射复合仍然是一个关键瓶颈,主要原因是界面缺陷和能级不匹配。在本研究中,我们通过在Me-4PACz/钙钛矿界面引入4,5-二碘咪唑(4,5-Di-I)展示了一种双功能夹层工程策略。这种方法独特地解决了基于SAM的界面的两个基本限制:由于空间位阻效应,传统Me-4PACz的缺陷钝化能力不足,以及疏水性SAM表面上钙钛矿润湿性差,加剧了界面空隙。咪唑衍生物不仅与配位不足的Pb形成强Pb-N配位键,还调节Me-4PACz的表面能,从而实现具有优先晶体取向的无针孔钙钛矿薄膜的生长。采用4,5-Di-I修饰的冠军器件实现了24.10%的功率转换效率(PCE),开路电压从1.12 V提高到1.14 V,同时在N₂气氛(25°C)中1300小时后保持初始PCE的91%,在ISOS-L-2协议下表现出优异的稳定性。这项工作建立了一种界面多功能设计的通用策略,证明了同时抑制缺陷和控制结晶可以打破溶液处理光伏器件中效率和稳定性之间长期存在的权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0335/12114383/9b84d93a8e58/nanomaterials-15-00766-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验