文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过合并检索到的失访者数据和回归基线方法来填补缺失数据。

Impute the missing data by combining retrieved dropouts and return to baseline method.

作者信息

Li Xiaozhou, Yang Zhenyu, Yuan Chuanji, Liu Jiaqing, Li Zuojing

机构信息

Department of Pharmaceutical informatics, School of Shenyang Pharmaceutical University, Shenyang, Liaoning, China.

Department of Biostatistics and Data Analysis, Liaoning Yidu Medical Data Technology Co., Ltd., Shenyang, Liaoning, China.

出版信息

PLoS One. 2025 May 29;20(5):e0323496. doi: 10.1371/journal.pone.0323496. eCollection 2025.


DOI:10.1371/journal.pone.0323496
PMID:40440333
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12121747/
Abstract

Currently, various methods have been proposed to handle missing data in clinical trials. Some methods assume that the missing data are missing at random (MAR), which means that it is assumed that subjects who stopped treatment would still maintain the treatment effect. In many cases, however, researchers often assume that the missing data are missing not at random (MNAR) to conduct additional sensitivity analyses. Under the MNAR assumption, whether using some conservative imputation methods such as RTB (return to baseline) method, J2R (jump to reference) method, and CR (copy reference) method, or optimistic imputation methods like multiple imputation (MI) and its derivative RD (retrieved dropout) method, biases compared to the true treatment effect can occur in some scenarios. This paper aims to propose a method that can impute results while considering the occurrence of intercurrent events, thereby reducing the bias compared to the true treatment effect. This method combines the RD method with the RTB formula, reducing the biases and standard errors associated with using either method alone. Considering the differing treatment effects between RD subjects and non-RD subjects, our imputation results often align more closely with the true drug efficacy.

摘要

目前,已经提出了各种方法来处理临床试验中的缺失数据。一些方法假定缺失数据是随机缺失(MAR),这意味着假定停止治疗的受试者仍会保持治疗效果。然而,在许多情况下,研究人员经常假定缺失数据是非随机缺失(MNAR),以便进行额外的敏感性分析。在MNAR假设下,无论是使用一些保守的插补方法,如RTB(回归基线)法、J2R(跳跃至对照)法和CR(复制对照)法,还是乐观的插补方法,如多重插补(MI)及其衍生的RD(检索失访者)法,在某些情况下与真实治疗效果相比都可能出现偏差。本文旨在提出一种能够在考虑并发事件发生的情况下插补结果的方法,从而减少与真实治疗效果相比的偏差。该方法将RD方法与RTB公式相结合,减少了单独使用任何一种方法时相关的偏差和标准误差。考虑到RD受试者和非RD受试者之间不同的治疗效果,我们的插补结果通常更接近真实的药物疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/9b07c6b2449d/pone.0323496.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/c8fca2bae240/pone.0323496.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/9e9ce94bbe32/pone.0323496.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/9b07c6b2449d/pone.0323496.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/c8fca2bae240/pone.0323496.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/9e9ce94bbe32/pone.0323496.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26fd/12121747/9b07c6b2449d/pone.0323496.g003.jpg

相似文献

[1]
Impute the missing data by combining retrieved dropouts and return to baseline method.

PLoS One. 2025-5-29

[2]
A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness.

Contemp Clin Trials. 2022-9

[3]
Impute the missing data using retrieved dropouts.

BMC Med Res Methodol. 2022-3-27

[4]
An adaptive imputation method of missing data for sparsely retrieved dropouts in treatment policy strategy.

Contemp Clin Trials. 2025-5

[5]
Estimation Methods for Estimands Using the Treatment Policy Strategy; a Simulation Study Based on the PIONEER 1 Trial.

Pharm Stat. 2025

[6]
Defining, evaluating, and removing bias induced by linear imputation in longitudinal clinical trials with MNAR missing data.

J Biopharm Stat. 2011-3

[7]
Comprehensive implementations of multiple imputation using retrieved dropouts for continuous endpoints.

BMC Med Res Methodol. 2025-2-21

[8]
Imputation of Missing Data for Time-to-Event Endpoints Using Retrieved Dropouts.

Ther Innov Regul Sci. 2024-1

[9]
Cumulative sojourn time in longitudinal studies: a sequential imputation method to handle missing health state data due to dropout.

Stat Med. 2014-5-30

[10]
A multiple imputation approach for MNAR mechanisms compatible with Heckman's model.

Stat Med. 2016-7-30

本文引用的文献

[1]
Estimation Methods for Estimands Using the Treatment Policy Strategy; a Simulation Study Based on the PIONEER 1 Trial.

Pharm Stat. 2025

[2]
Estimand Framework and Statistical Considerations for Integrated Analysis of Clinical Trial Safety Data.

Ther Innov Regul Sci. 2024-11

[3]
Handling Partially Observed Trial Data After Treatment Withdrawal: Introducing Retrieved Dropout Reference-Base Centred Multiple Imputation.

Pharm Stat. 2024

[4]
Addressing missing outcome data in randomised controlled trials: A methodological scoping review.

Contemp Clin Trials. 2024-8

[5]
The estimands framework: a primer on the ICH E9(R1) addendum.

BMJ. 2024-1-23

[6]
Application of hypothetical strategies in acute pain.

Pharm Stat. 2024

[7]
Statistical methods for handling missing data to align with treatment policy strategy.

Pharm Stat. 2023

[8]
A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness.

Contemp Clin Trials. 2022-9

[9]
A Randomized Clinical Trial Comparing Two Treatment Strategies, Evaluating the Meaningfulness of HAM-D Rating Scale in Patients With Major Depressive Disorder.

Front Psychiatry. 2022-5-27

[10]
Impute the missing data using retrieved dropouts.

BMC Med Res Methodol. 2022-3-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索