Suppr超能文献

边界附近微观悬浮生物的新视角。

A new angle on microscopic suspension feeders near boundaries.

机构信息

Departments of Integrative Biology and Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California.

出版信息

Biophys J. 2013 Oct 15;105(8):1796-804. doi: 10.1016/j.bpj.2013.08.029.

Abstract

Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle.

摘要

微观固着悬浮取食者是水生生态系统的关键组成部分,它们作为细菌和高等真核生物之间的中间营养级。由于它们附着在边界上,长期以来人们一直认为,固着悬浮取食者产生的食物流的再循环抑制了它们获取新鲜流体的能力。然而,这些生物体的取食流的先前模型假设它们通过将流体推向它们生活的表面来取食,而我们观察到固着悬浮取食者通常以相对于这些边界的角度取食。通过实验和计算,我们表明活的悬浮取食者(钟形虫)可能会主动调节它们相对于基质的取食角度。然后,我们使用理论和模拟表明,角度取食通过减少贫化水的再处理,增加了营养物和颗粒的摄取。这项工作解决了一个悬而未决的问题,即一类关键的悬浮取食生物如何摆脱与其固着生活方式相关的物理限制。

相似文献

1
A new angle on microscopic suspension feeders near boundaries.
Biophys J. 2013 Oct 15;105(8):1796-804. doi: 10.1016/j.bpj.2013.08.029.
2
The effect of external flow on the feeding currents of sessile microorganisms.
J R Soc Interface. 2021 Feb;18(175):20200953. doi: 10.1098/rsif.2020.0953. Epub 2021 Feb 24.
3
Nearby boundaries create eddies near microscopic filter feeders.
J R Soc Interface. 2010 May 6;7(46):851-62. doi: 10.1098/rsif.2009.0419. Epub 2009 Nov 26.
4
The effect of external flow on 3D orientation of a microscopic sessile suspension feeder, Vorticella convallaria.
Ann N Y Acad Sci. 2024 Jul;1537(1):51-63. doi: 10.1111/nyas.15170. Epub 2024 Jun 21.
5
The effect of tethering on the clearance rate of suspension-feeding plankton.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30101-30103. doi: 10.1073/pnas.2017441117. Epub 2020 Nov 16.
6
Active sinking particles: sessile suspension feeders significantly alter the flow and transport to sinking aggregates.
J R Soc Interface. 2023 Feb;20(199):20220537. doi: 10.1098/rsif.2022.0537. Epub 2023 Feb 8.
8
On predicting particle capture rates in aquatic ecosystems.
PLoS One. 2021 Dec 22;16(12):e0261400. doi: 10.1371/journal.pone.0261400. eCollection 2021.
9
Aquatic-terrestrial transitions of feeding systems in vertebrates: a mechanical perspective.
J Exp Biol. 2018 Apr 25;221(Pt 8):jeb154427. doi: 10.1242/jeb.154427.

引用本文的文献

1
Cooperative hydrodynamics accompany multicellular-like colonial organization in the unicellular ciliate .
Nat Phys. 2025 Apr;21(4):624-631. doi: 10.1038/s41567-025-02787-y. Epub 2025 Mar 31.
2
Flow physics of nutrient transport drives functional design of ciliates.
Nat Commun. 2025 May 4;16(1):4154. doi: 10.1038/s41467-025-59413-x.
3
Incorporating recirculation effects into metrics of feeding performance for current-feeding zooplankton.
J R Soc Interface. 2024 Mar;21(212):20230706. doi: 10.1098/rsif.2023.0706. Epub 2024 Mar 13.
4
Active sinking particles: sessile suspension feeders significantly alter the flow and transport to sinking aggregates.
J R Soc Interface. 2023 Feb;20(199):20220537. doi: 10.1098/rsif.2022.0537. Epub 2023 Feb 8.
5
Switching of behavioral modes and their modulation by a geometrical cue in the ciliate .
Front Cell Dev Biol. 2022 Nov 1;10:1021469. doi: 10.3389/fcell.2022.1021469. eCollection 2022.
6
Teamwork in the viscous oceanic microscale.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2018193118.
7
Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes.
Nat Commun. 2021 Mar 26;12(1):1906. doi: 10.1038/s41467-021-22029-y.
8
The effect of external flow on the feeding currents of sessile microorganisms.
J R Soc Interface. 2021 Feb;18(175):20200953. doi: 10.1098/rsif.2020.0953. Epub 2021 Feb 24.
9
Flow and transport effect caused by the stalk contraction cycle of .
Biomicrofluidics. 2017 Jun 14;11(3):034119. doi: 10.1063/1.4985654. eCollection 2017 May.
10
Filter-feeding, near-field flows, and the morphologies of colonial choanoflagellates.
Phys Rev E. 2016 Nov;94(5-1):052401. doi: 10.1103/PhysRevE.94.052401. Epub 2016 Nov 1.

本文引用的文献

2
Energy budgets for Stentor coeruleus Ehrenberg (Ciliophora).
Oecologia. 1976 Dec;22(4):431-437. doi: 10.1007/BF00345319.
3
Cooperatively generated stresslet flows supply fresh fluid to multicellular choanoflagellate colonies.
Phys Rev Lett. 2013 May 31;110(22):228104. doi: 10.1103/PhysRevLett.110.228104.
4
Marine microbes see a sea of gradients.
Science. 2012 Nov 2;338(6107):628-33. doi: 10.1126/science.1208929.
6
Nearby boundaries create eddies near microscopic filter feeders.
J R Soc Interface. 2010 May 6;7(46):851-62. doi: 10.1098/rsif.2009.0419. Epub 2009 Nov 26.
8
Dancing volvox: hydrodynamic bound states of swimming algae.
Phys Rev Lett. 2009 Apr 24;102(16):168101. doi: 10.1103/PhysRevLett.102.168101. Epub 2009 Apr 20.
9
Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring.
Biophys J. 2008 Jan 1;94(1):265-72. doi: 10.1529/biophysj.107.108852. Epub 2007 Oct 12.
10
'Infotaxis' as a strategy for searching without gradients.
Nature. 2007 Jan 25;445(7126):406-9. doi: 10.1038/nature05464.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验