Suppr超能文献

近边界处会在微观过滤觅食者附近产生涡流。

Nearby boundaries create eddies near microscopic filter feeders.

机构信息

Department of Physics, Harvard University, Cambridge, MA 02138, USA.

出版信息

J R Soc Interface. 2010 May 6;7(46):851-62. doi: 10.1098/rsif.2009.0419. Epub 2009 Nov 26.

Abstract

We show through calculations, simulations and experiments that the eddies often observed near sessile filter feeders are frequently due to the presence of nearby boundaries. We model the common filter feeder Vorticella, which is approximately 50 microm across and which feeds by removing bacteria from ocean or pond water that it draws towards itself. We use both an analytical stokeslet model and a Brinkman flow approximation that exploits the narrow-gap geometry to predict the size of the eddy caused by two parallel no-slip boundaries that represent the slides between which experimental observations are often made. We also use three-dimensional finite-element simulations to fully solve for the flow around a model Vorticella and analyse the influence of multiple nearby boundaries. Additionally, we track particles around live feeding Vorticella in order to determine the experimental flow field. Our models are in good agreement both with each other and with experiments. We also provide approximate equations to predict the experimental eddy sizes owing to boundaries both for the case of a filter feeder between two slides and for the case of a filter feeder attached to a perpendicular surface between two slides.

摘要

我们通过计算、模拟和实验表明,在固着滤食动物附近经常观察到的漩涡通常是由于附近边界的存在。我们对常见的滤食动物钟形虫进行了建模,钟形虫的直径约为 50 微米,通过将自身吸入的海洋或池塘水中的细菌去除来进行滤食。我们同时使用了 Stokeslet 解析模型和 Brinkman 流动近似方法,该方法利用狭窄间隙的几何形状来预测由两个平行的无滑移边界引起的漩涡的大小,这两个边界代表了实验中经常观察到的滑动片之间的边界。我们还使用三维有限元模拟来全面求解模型钟形虫周围的流动,并分析多个附近边界的影响。此外,我们还跟踪活体滤食钟形虫周围的颗粒,以确定实验流场。我们的模型彼此之间以及与实验结果都非常吻合。我们还提供了近似方程,以预测由于两个滑动片之间的滤食动物以及两个滑动片之间垂直表面上的滤食动物引起的实验漩涡大小。

相似文献

1
Nearby boundaries create eddies near microscopic filter feeders.
J R Soc Interface. 2010 May 6;7(46):851-62. doi: 10.1098/rsif.2009.0419. Epub 2009 Nov 26.
2
A new angle on microscopic suspension feeders near boundaries.
Biophys J. 2013 Oct 15;105(8):1796-804. doi: 10.1016/j.bpj.2013.08.029.
3
The effect of external flow on the feeding currents of sessile microorganisms.
J R Soc Interface. 2021 Feb;18(175):20200953. doi: 10.1098/rsif.2020.0953. Epub 2021 Feb 24.
4
The effect of external flow on 3D orientation of a microscopic sessile suspension feeder, Vorticella convallaria.
Ann N Y Acad Sci. 2024 Jul;1537(1):51-63. doi: 10.1111/nyas.15170. Epub 2024 Jun 21.
5
A daily global mesoscale ocean eddy dataset from satellite altimetry.
Sci Data. 2015 Jun 9;2:150028. doi: 10.1038/sdata.2015.28. eCollection 2015.
7
Comment on "Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms".
Science. 2008 Apr 25;320(5875):448; author reply 448. doi: 10.1126/science.1152111.
8
Stalk-length-dependence of the contractility of Vorticella convallaria.
Phys Biol. 2017 Nov 16;14(6):066002. doi: 10.1088/1478-3975/aa89b8.
9
Anthropogenic iodine-129 in the Arctic Ocean and Nordic Seas: numerical modeling and prognoses.
Mar Pollut Bull. 2006 Apr;52(4):380-5. doi: 10.1016/j.marpolbul.2005.09.025. Epub 2005 Nov 2.

引用本文的文献

1
Cooperative hydrodynamics accompany multicellular-like colonial organization in the unicellular ciliate .
Nat Phys. 2025 Apr;21(4):624-631. doi: 10.1038/s41567-025-02787-y. Epub 2025 Mar 31.
2
Flow physics of nutrient transport drives functional design of ciliates.
Nat Commun. 2025 May 4;16(1):4154. doi: 10.1038/s41467-025-59413-x.
3
Incorporating recirculation effects into metrics of feeding performance for current-feeding zooplankton.
J R Soc Interface. 2024 Mar;21(212):20230706. doi: 10.1098/rsif.2023.0706. Epub 2024 Mar 13.
5
Switching of behavioral modes and their modulation by a geometrical cue in the ciliate .
Front Cell Dev Biol. 2022 Nov 1;10:1021469. doi: 10.3389/fcell.2022.1021469. eCollection 2022.
7
Teamwork in the viscous oceanic microscale.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2018193118.
8
Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes.
Nat Commun. 2021 Mar 26;12(1):1906. doi: 10.1038/s41467-021-22029-y.
9
The effect of external flow on the feeding currents of sessile microorganisms.
J R Soc Interface. 2021 Feb;18(175):20200953. doi: 10.1098/rsif.2020.0953. Epub 2021 Feb 24.
10
Reorganization of complex ciliary flows around regenerating .
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190167. doi: 10.1098/rstb.2019.0167. Epub 2019 Dec 30.

本文引用的文献

2
Energy budgets for Stentor coeruleus Ehrenberg (Ciliophora).
Oecologia. 1976 Dec;22(4):431-437. doi: 10.1007/BF00345319.
5
Dancing volvox: hydrodynamic bound states of swimming algae.
Phys Rev Lett. 2009 Apr 24;102(16):168101. doi: 10.1103/PhysRevLett.102.168101. Epub 2009 Apr 20.
6
Coherent structures in monolayers of swimming particles.
Phys Rev Lett. 2008 Feb 29;100(8):088103. doi: 10.1103/PhysRevLett.100.088103. Epub 2008 Feb 27.
8
Flows driven by flagella of multicellular organisms enhance long-range molecular transport.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8315-9. doi: 10.1073/pnas.0600566103. Epub 2006 May 17.
9
Analysis of the flow field induced by the sessile peritrichous ciliate Opercularia asymmetrica.
J Biomech. 2007;40(1):137-48. doi: 10.1016/j.jbiomech.2005.11.006. Epub 2006 Jan 30.
10
Choanoflagellates.
Curr Biol. 2005 Feb 22;15(4):R113-4. doi: 10.1016/j.cub.2005.02.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验