Suppr超能文献

涡虫的非稳定运动、有限雷诺数和壁面效应使其产生的收缩力大于斯托克斯阻力。

Unsteady motion, finite Reynolds numbers, and wall effect on Vorticella convallaria contribute contraction force greater than the stokes drag.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2010 Jun 2;98(11):2574-81. doi: 10.1016/j.bpj.2010.02.025.

Abstract

Contraction of Vorticella convallaria, a sessile ciliated protozoan, is completed within a few milliseconds and results in a retraction of its cell body toward the substratum by coiling its stalk. Previous studies have modeled the cell body as a sphere and assumed a drag force that satisfies Stokes' law. However, the contraction-induced flow of the medium is transient and bounded by the substrate, and the maximum Reynolds number is larger than unity. Thus, calculations of contractile force from the drag force are incomplete. In this study, we analyzed fluid flow during contraction by the particle tracking velocimetry and computational fluid dynamics simulations to estimate the contractile force. Particle paths show that the induced flow is limited by the substrate. Simulation-based force estimates suggest that the combined effect of the flow unsteadiness, the finite Reynolds number, and the substrate comprises 35% of the total force. The work done in the early stage of contraction and the maximum power output are similar regardless of the medium viscosity. These results suggest that, during the initial development of force, V. convallaria uses a common mechanism for performing mechanical work irrespective of viscous loading conditions.

摘要

喇叭虫(Vorticella convallaria)是一种固着纤毛虫,其收缩过程在几毫秒内完成,通过卷曲柄部将细胞本体向基质缩回。先前的研究将细胞本体建模为球体,并假设满足斯托克斯定律的阻力。然而,收缩引起的介质流动是瞬态的,并受限于基质,最大雷诺数大于 1。因此,从阻力计算收缩力是不完整的。在这项研究中,我们通过粒子追踪测速法和计算流体动力学模拟分析收缩过程中的流体流动,以估计收缩力。粒子轨迹表明,诱导流受到基质的限制。基于模拟的力估计表明,流动不稳定性、有限的雷诺数和基质的综合作用占总力的 35%。收缩初期所做的功和最大输出功率与介质粘度无关。这些结果表明,在力的初始发展阶段,喇叭虫使用一种通用机制来进行机械功,而与粘性加载条件无关。

相似文献

4
Direct measurement of Vorticella contraction force by micropipette deflection.
FEBS Lett. 2017 Feb;591(4):581-589. doi: 10.1002/1873-3468.12577. Epub 2017 Feb 17.
7
Mechanics of Vorticella contraction.钟形虫收缩的力学机制。
Biophys J. 2010 Jun 16;98(12):2923-32. doi: 10.1016/j.bpj.2010.03.023.

引用本文的文献

1
Form and function in biological filaments: a physicist's review.生物细丝的形态与功能:物理学家的综述
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
2
A unified model for the dynamics of ATP-independent ultrafast contraction.一种用于无 ATP 超快收缩动力学的统一模型。
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2217737120. doi: 10.1073/pnas.2217737120. Epub 2023 Jun 12.
4
Three-dimensional manipulation of single cells using surface acoustic waves.利用表面声波对单细胞进行三维操控。
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1522-7. doi: 10.1073/pnas.1524813113. Epub 2016 Jan 25.
6
Mechanics of Vorticella contraction.钟形虫收缩的力学机制。
Biophys J. 2010 Jun 16;98(12):2923-32. doi: 10.1016/j.bpj.2010.03.023.
7
Nearby boundaries create eddies near microscopic filter feeders.近边界处会在微观过滤觅食者附近产生涡流。
J R Soc Interface. 2010 May 6;7(46):851-62. doi: 10.1098/rsif.2009.0419. Epub 2009 Nov 26.

本文引用的文献

3
[The mechanism of a new contraction cycle differing from muscle contraction].
Biochim Biophys Acta. 1958 Feb;27(2):247-55. doi: 10.1016/0006-3002(58)90331-7.
4
Motility powered by supramolecular springs and ratchets.由超分子弹簧和棘轮驱动的运动
Science. 2000 Apr 7;288(5463):95-100. doi: 10.1126/science.288.5463.95.
6
Ca(2+)-induced tension development in the stalks of glycerinated Vorticella convallaria.
Cell Motil Cytoskeleton. 1996;34(4):271-8. doi: 10.1002/(SICI)1097-0169(1996)34:4<271::AID-CM2>3.0.CO;2-B.
7
Reversible mechanochemical cycle in the contraction of Vorticella.
Nature. 1971 Jan 8;229(5280):127-8. doi: 10.1038/229127a0.
9
Effect of viscosity on bacterial motility.粘度对细菌运动性的影响。
J Bacteriol. 1974 Feb;117(2):696-701. doi: 10.1128/jb.117.2.696-701.1974.
10
Calcium-binding proteins in a vorticellid contractile organelle.
J Cell Sci. 1975 Oct;19(1):203-13. doi: 10.1242/jcs.19.1.203.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验