Suppr超能文献

利用超高速度成像技术深入了解超声溶栓的机制。

New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.

机构信息

Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

出版信息

Ultrasound Med Biol. 2014 Jan;40(1):258-62. doi: 10.1016/j.ultrasmedbio.2013.08.021. Epub 2013 Oct 18.

Abstract

Thrombotic arterial occlusion is the principal etiology for acute cardiovascular syndromes such as stroke, myocardial infarction and unstable angina. Exposing the thrombus to ultrasound and microbubbles facilitates thrombus disruption, making "sonothrombolysis" a potentially powerful therapeutic strategy for thromboembolic diseases. However, optimization of such a strategy, and hence clinical translation, is constrained by an incomplete understanding of mechanisms by which ultrasound-induced microbubble vibrations disrupt blood clots. We posit that previously reported sonothrombolytic efficacy using inertial cavitation regimes was due, at least in part, to mechanical clot disruption by oscillating microbubbles. To test this hypothesis, we optically characterized lipid microbubble interactions with thrombus in the presence of ultrasound using a recently developed ultra-high-speed microscopy imaging system to visualize microbubble acoustic behaviors at megahertz frame rates. A microscope/acoustic stage designed for the system allowed an experimentally created thrombus and microbubbles to be insonified at a co-localized acoustic and optical focus during synchronized high-speed imaging. Under inertial cavitation conditions, large-amplitude microbubble oscillations caused thrombus deformation and pitting. Acoustic radiation forces (Bjerknes forces) further augmented microbubble-thrombus interaction. These observations suggest that a direct mechanical effect of oscillating lipid microbubbles on an adjacent thrombus may play a role in mediating clot disruption in the presence of specific ultrasound conditions.

摘要

血栓性动脉闭塞是中风、心肌梗死和不稳定型心绞痛等急性心血管综合征的主要病因。将血栓暴露于超声和微泡中有助于破坏血栓,使“声溶栓”成为血栓栓塞性疾病的一种潜在强大的治疗策略。然而,由于对超声诱导的微泡振动破坏血栓的机制缺乏完整的理解,这种策略的优化以及因此临床转化受到限制。我们假设,以前使用惯性空化机制报告的声溶栓疗效至少部分归因于振荡微泡对机械血栓的破坏。为了验证这一假设,我们使用最近开发的超高速度显微镜成像系统,通过光学方法在存在超声的情况下对血栓中的脂质微泡相互作用进行了特征描述,该系统以兆赫兹帧率可视化微泡的声行为。为该系统设计的显微镜/声级联允许在同步高速成像过程中,在实验产生的血栓和微泡上声照射和光学焦点共定位。在惯性空化条件下,大振幅微泡振动导致血栓变形和凹坑。声辐射力(Bjerknes 力)进一步增强了微泡-血栓的相互作用。这些观察结果表明,在特定超声条件下,振荡脂质微泡对相邻血栓的直接机械作用可能在介导血栓破坏中起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验