Suppr超能文献

在微血管阻塞的体外模型中,与组织型纤溶酶原激活剂联合使用时,含微泡的惯性空化超声可提高再灌注效果。

Inertial Cavitation Ultrasound with Microbubbles Improves Reperfusion Efficacy When Combined with Tissue Plasminogen Activator in an In Vitro Model of Microvascular Obstruction.

作者信息

Goyal Akash, Yu Francois T H, Tenwalde Mathea G, Chen Xucai, Althouse Andrew, Villanueva Flordeliza S, Pacella John J

机构信息

Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Clinical Biostatistics Core, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

出版信息

Ultrasound Med Biol. 2017 Jul;43(7):1391-1400. doi: 10.1016/j.ultrasmedbio.2017.02.013. Epub 2017 Apr 7.

Abstract

We have previously reported that long-tone-burst, high-mechanical-index ultrasound (US) and microbubble (MB) therapy can restore perfusion in both in vitro and in vivo models of microvascular obstruction (MVO). Addition of MBs to US has been found to potentiate the efficacy of thrombolytics on large venous thrombi; however, the optimal US parameters for achieving microvascular reperfusion of MVO caused by microthrombi, when combined with tissue plasminogen activator (tPA), are unknown. We sought to elucidate the specific effects of US, with and without tPA, for effective reperfusion of MVO in an in vitro model using both venous and arterial microthrombi. Venous- and arterial-type microthrombi were infused onto a mesh with 40-μm pores to simulate MVO. Pulsed US (1 MHz) was delivered with inertial cavitation (IC) (1.0 MPa, 1000 cycles, 0.33 Hz) and stable cavitation (SC) US (0.23 MPa, 20% duty cycle, 0.33 Hz) regimes while MB suspension (2 × 10 MBs/mL) was infused. The efficacy of sonoreperfusion with these parameters was tested with and without tPA. Sonoreperfusion efficacy was significantly greater for IC + tPA compared with tPA alone, IC, SC and SC + tPA, suggesting lytic synergism between tPA and US for both venous- and arterial-type microthrombi. In contrast to our previous in vitro studies using 1.5 MPa at 5000 US cycles without tPA, the IC regime employed herein used 90% less US energy. These findings suggest an IC regime can be used with tPA synergistically to achieve a high degree of fibrinolysis for both thrombus types.

摘要

我们之前曾报道,长脉冲串、高机械指数超声(US)与微泡(MB)联合治疗可在体外和体内微血管阻塞(MVO)模型中恢复灌注。已发现向超声中添加微泡可增强溶栓剂对大静脉血栓的疗效;然而,当与组织纤溶酶原激活剂(tPA)联合使用时,实现由微血栓引起的MVO微血管再灌注的最佳超声参数尚不清楚。我们试图阐明超声(无论有无tPA)在使用静脉和动脉微血栓的体外模型中对MVO有效再灌注的具体作用。将静脉型和动脉型微血栓注入具有40μm孔隙的网片上以模拟MVO。在注入微泡悬浮液(2×10个微泡/mL)的同时,采用惯性空化(IC)(1.0MPa,1000个周期,0.33Hz)和稳定空化(SC)超声(0.23MPa,20%占空比,0.33Hz)模式施加脉冲超声(1MHz)。在有和没有tPA的情况下测试了这些参数的超声再灌注疗效。与单独使用tPA、IC、SC和SC + tPA相比,IC + tPA的超声再灌注疗效显著更高,这表明tPA与超声在静脉型和动脉型微血栓方面具有溶栓协同作用。与我们之前在不使用tPA的情况下以5000个超声周期使用1.5MPa的体外研究相比,本文采用的IC模式使用的超声能量减少了90%。这些发现表明,IC模式可与tPA协同使用,以实现两种血栓类型的高度纤维蛋白溶解。

相似文献

2
Sonoreperfusion Therapy Kinetics in Whole Blood Using Ultrasound, Microbubbles and Tissue Plasminogen Activator.
Ultrasound Med Biol. 2016 Dec;42(12):3001-3009. doi: 10.1016/j.ultrasmedbio.2016.08.013. Epub 2016 Sep 26.
3
Effect of Thrombus Composition and Viscosity on Sonoreperfusion Efficacy in a Model of Micro-Vascular Obstruction.
Ultrasound Med Biol. 2016 Sep;42(9):2220-31. doi: 10.1016/j.ultrasmedbio.2016.04.004. Epub 2016 May 17.
4
Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis.
Ultrasound Med Biol. 2020 Jul;46(7):1698-1706. doi: 10.1016/j.ultrasmedbio.2020.03.012. Epub 2020 May 7.
5
Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis.
Ultrasound Med Biol. 2012 Sep;38(9):1589-98. doi: 10.1016/j.ultrasmedbio.2012.05.020. Epub 2012 Jul 3.
6
Magnetic Targeting Improves the Therapeutic Efficacy of Microbubble-Mediated Obstructive Thrombus Sonothrombolysis.
Thromb Haemost. 2019 Nov;119(11):1752-1766. doi: 10.1055/s-0039-1695767. Epub 2019 Sep 2.
7
Microbubble-Mediated Sonothrombolysis Improves Outcome After Thrombotic Microembolism-Induced Acute Ischemic Stroke.
Stroke. 2016 May;47(5):1344-53. doi: 10.1161/STROKEAHA.115.012056. Epub 2016 Apr 5.
8
Fibrin-targeted phase shift microbubbles for the treatment of microvascular obstruction.
Nanotheranostics. 2024 Jan 1;8(1):33-47. doi: 10.7150/ntno.85092. eCollection 2024.
9
10
Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Jan;49(1):152-164. doi: 10.1016/j.ultrasmedbio.2022.08.009. Epub 2022 Oct 15.

引用本文的文献

1
Long-pulsed ultrasound-mediated microbubble thrombolysis in a rat model of microvascular obstruction.
Open Med (Wars). 2024 Mar 27;19(1):20240935. doi: 10.1515/med-2024-0935. eCollection 2024.
3
Sonothrombolysis: State-of-the-Art and Potential Applications in Children.
Children (Basel). 2023 Dec 31;11(1):57. doi: 10.3390/children11010057.
4
Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Apr;49(4):996-1006. doi: 10.1016/j.ultrasmedbio.2022.12.013. Epub 2023 Jan 24.
5
Microbubble-Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery.
Pharmaceutics. 2022 Nov 7;14(11):2396. doi: 10.3390/pharmaceutics14112396.
6
Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy.
Ultrasound Med Biol. 2023 Jan;49(1):152-164. doi: 10.1016/j.ultrasmedbio.2022.08.009. Epub 2022 Oct 15.
7
Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom.
Ultrasound Med Biol. 2021 Mar;47(3):693-709. doi: 10.1016/j.ultrasmedbio.2020.10.010. Epub 2021 Jan 7.
8
Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery.
Ultrasound Med Biol. 2020 Jun;46(6):1296-1325. doi: 10.1016/j.ultrasmedbio.2020.01.002. Epub 2020 Mar 10.
9
Sonoreperfusion therapy for microvascular obstruction: A step toward clinical translation.
Ultrasound Med Biol. 2020 Mar;46(3):712-720. doi: 10.1016/j.ultrasmedbio.2019.11.011. Epub 2020 Jan 7.
10

本文引用的文献

1
Sonoreperfusion Therapy Kinetics in Whole Blood Using Ultrasound, Microbubbles and Tissue Plasminogen Activator.
Ultrasound Med Biol. 2016 Dec;42(12):3001-3009. doi: 10.1016/j.ultrasmedbio.2016.08.013. Epub 2016 Sep 26.
2
Effect of Thrombus Composition and Viscosity on Sonoreperfusion Efficacy in a Model of Micro-Vascular Obstruction.
Ultrasound Med Biol. 2016 Sep;42(9):2220-31. doi: 10.1016/j.ultrasmedbio.2016.04.004. Epub 2016 May 17.
3
Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis.
Ultrasound Med Biol. 2015 May;41(5):1402-10. doi: 10.1016/j.ultrasmedbio.2014.12.007. Epub 2015 Jan 15.
4
Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study.
Ultrasound Med Biol. 2015 Feb;41(2):456-64. doi: 10.1016/j.ultrasmedbio.2014.09.033. Epub 2014 Dec 23.
5
Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis.
Ultrasound Med Biol. 2015 Jan;41(1):187-96. doi: 10.1016/j.ultrasmedbio.2014.08.018. Epub 2014 Nov 15.
6
Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.
Ultrasound Med Biol. 2014 Sep;40(9):2134-50. doi: 10.1016/j.ultrasmedbio.2014.03.008. Epub 2014 May 29.
7
Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration.
Ultrasound Med Biol. 2014 Jul;40(7):1545-53. doi: 10.1016/j.ultrasmedbio.2014.01.015. Epub 2014 Mar 7.
8
New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.
Ultrasound Med Biol. 2014 Jan;40(1):258-62. doi: 10.1016/j.ultrasmedbio.2013.08.021. Epub 2013 Oct 18.
9
Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects.
Rev Sci Instrum. 2013 Jun;84(6):063701. doi: 10.1063/1.4809168.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验