Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
Biomaterials. 2014 Jan;35(2):814-24. doi: 10.1016/j.biomaterials.2013.10.003. Epub 2013 Oct 18.
Accumulating evidence implicates the tumor-draining lymph node (TDLN) in tumor-induced immune escape, as it drains regulatory molecules and leukocytes from the tumor microenvironment. We asked whether targeted delivery of adjuvant to the TDLN, presumably already bathed in tumor antigens, could promote anti-tumor immunity and hinder tumor growth. To this end, we used 30 nm polymeric nanoparticles (NPs) that effectively target dendritic cells (DCs, CD11c(+)) within the lymph node (LN) after intradermal administration. These NPs accumulated within the TDLN when administered in the limb ipsilateral (i.l.) to the tumor or in the non-TDLN when administered in the contralateral (c.l.) limb. Incorporating the adjuvants CpG or paclitaxel into the NPs (CpG-NP and PXL-NP) induced DC maturation in vitro. When administered daily i.l. and thus targeting the TDLN of a B16-F10 melanoma, adjuvanted NPs induced DC maturation within the TDLN and reshaped the CD4(+) T cell distribution within the tumor towards a Th1 (CXCR3(+)) phenotype. Importantly, this also led to an increase in the frequency of antigen-specific CD8(+) T cells within the tumor. This correlated with slowed tumor growth, in contrast to unhindered tumor growth after c.l. delivery of adjuvanted NPs (targeting a non-TDLN) or i.l. delivery of free adjuvant. CpG-NP treatment in the i.l. limb also was associated with an increase in CD8(+)/CD4(+) T cell ratios and frequencies of activated (CD25(+)) CD8(+) T cells within the TDLN whereas PXL-NP treatment reduced the frequency of regulatory T (FoxP3(+) CD4(+)) cells in the TDLN. Together, these data implicate the TDLN as a delivery target for adjuvant therapy of solid tumors.
越来越多的证据表明,肿瘤引流淋巴结(TDLN)在肿瘤诱导的免疫逃逸中起作用,因为它从肿瘤微环境中排出调节分子和白细胞。我们想知道,将佐剂靶向递送至 TDLN 中,可能已经被肿瘤抗原浸润,是否可以促进抗肿瘤免疫并抑制肿瘤生长。为此,我们使用了 30nm 聚合物纳米颗粒(NPs),这些纳米颗粒在皮内给药后可以有效地靶向淋巴结(LN)中的树突状细胞(DC,CD11c(+))。当在肿瘤同侧(i.l.)肢体或对侧(c.l.)肢体给药时,这些 NPs 分别在 TDLN 或非 TDLN 中积累。将佐剂 CpG 或紫杉醇掺入 NPs 中(CpG-NP 和 PXL-NP)可在体外诱导 DC 成熟。当每天在 i.l. 给药以靶向 B16-F10 黑色素瘤的 TDLN 时,佐剂 NPs 诱导 TDLN 内的 DC 成熟,并重塑肿瘤内 CD4(+) T 细胞分布向 Th1(CXCR3(+))表型。重要的是,这也导致肿瘤内抗原特异性 CD8(+) T 细胞的频率增加。这与肿瘤生长缓慢相关,而在对侧(c.l.)给予佐剂 NPs(靶向非 TDLN)或 i.l. 给予游离佐剂后,肿瘤不受阻碍地生长。在 i.l. 肢体中给予 CpG-NP 治疗还与 TDLN 中 CD8(+)/CD4(+) T 细胞比例和激活的(CD25(+))CD8(+) T 细胞频率增加相关,而 PXL-NP 治疗降低了 TDLN 中调节性 T(FoxP3(+) CD4(+))细胞的频率。总之,这些数据表明 TDLN 是实体瘤佐剂治疗的一个潜在的递送靶点。
Cancer Immunol Res. 2014-2-11
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2004-9
ACS Appl Mater Interfaces. 2025-7-16
Chem Mater. 2024-10-8
Front Immunol. 2025-4-11
Transl Oncol. 2025-6
Nano Converg. 2024-12-11