Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18098-103. doi: 10.1073/pnas.1305981110. Epub 2013 Oct 21.
The coupling of subseafloor microbial life to oceanographic and atmospheric conditions is poorly understood. We examined diagenetic imprints and lipid biomarkers of past subseafloor microbial activity to evaluate its response to glacial-interglacial cycles in a sedimentary section drilled on the Peruvian shelf (Ocean Drilling Program Leg 201, Site 1229). Multiple and distinct layers of diagenetic barite and dolomite, i.e., minerals that typically form at the sulfate-methane transition (SMT), occur at much shallower burial depth than the present SMT around 30 meters below seafloor. These shallow layers co-occur with peaks of (13)C-depleted archaeol, a molecular fossil of anaerobic methane-oxidizing Archaea. Present-day, non-steady state distributions of dissolved sulfate also suggest that the SMT is highly sensitive to variations in organic carbon flux to the surface shelf sediments that may lead to shoaling of the SMT. Reaction-transport modeling substantiates our hypothesis that shallow SMTs occur in response to cyclic sediment deposition with a high organic carbon flux during interglacials and a low organic carbon flux during glacial stages. Long diffusion distances expectedly dampen the response of deeply buried microbial communities to changes in sediment deposition and other oceanographic drivers over relatively short geological time scales, e.g., glacial-interglacial periods. However, our study demonstrates how dynamically sediment biogeochemistry of the Peru Margin has responded to glacial-interglacial change and how these changes are now preserved in the geological record. Such changes in subsurface biogeochemical zonation need to be taken into account to assess the role of the subseafloor biosphere in global element and redox cycling.
海底微生物生命与海洋学和大气条件的耦合作用还不太为人所知。我们研究了过去海底微生物活动的成岩印记和脂质生物标志物,以评估其对秘鲁大陆架沉积岩芯(海洋钻探计划第 201 航次,站位 1229)冰期-间冰期旋回的响应。多个且明显不同的成岩重晶石和白云石层,即在硫酸盐-甲烷转换(SMT)处形成的典型矿物,出现在比现今海底以下 30 米处的 SMT 浅得多的埋藏深度。这些浅层与(13)C 耗尽的古菌同时出现,古菌是一种厌氧甲烷氧化古菌的分子化石。现今,溶解硫酸盐的非稳态分布也表明 SMT 对向表层大陆架沉积物输入有机碳通量的变化非常敏感,这可能导致 SMT 变浅。反应-输运模型证实了我们的假设,即在间冰期有机碳通量较高和冰期有机碳通量较低的情况下,浅层 SMT 是由于周期性的沉积物沉积而发生的。预计长的扩散距离会抑制深埋微生物群落对沉积和其他海洋学驱动因素变化的响应,这种变化在相对较短的地质时间尺度上,如冰期-间冰期期间发生。然而,我们的研究表明秘鲁边缘的沉积物生物地球化学是如何对冰期-间冰期变化做出动态响应的,以及这些变化是如何在地质记录中保存下来的。在评估海底生物圈在全球元素和氧化还原循环中的作用时,需要考虑这种地下生物地球化学分带的变化。