Institute for Science and Technology in Medicine, School of Medicine, Keele University , David Weatherall building, Keele, Staffordshire ST5 5BG, United Kingdom.
ACS Chem Neurosci. 2014 Jan 15;5(1):51-63. doi: 10.1021/cn400167n. Epub 2013 Nov 7.
Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits.
皮质类固醇(CS)治疗广泛用于治疗多种疾病,但会延迟髓鞘的产生,髓鞘是中枢神经系统神经纤维的绝缘鞘。CS 作用的细胞靶点尚未完全了解,即髓鞘发生中涉及的细胞的“直接”作用[少突胶质细胞及其前体细胞(OPC)]与其他神经细胞的“间接”作用。我们评估了广泛使用的 CS 地塞米松(DEX)对纯化的 OPC 和少突胶质细胞的影响,采用了互补的组织学和转录分析。组织学评估显示 DEX 对 OPC 增殖或少突胶质细胞发生/成熟(髓鞘发生的关键过程)没有影响。免疫染色和 RT-PCR 分析表明,这两种细胞类型都表达糖皮质激素受体(GR;DEX 作用的靶标),排除了受体表达作为 DEX 无反应性的因果因素。GR 作为配体激活的转录因子发挥作用,因此我们同时使用微阵列分析来分析 DEX 诱导的转录反应;这些结果与组织学发现一致,DEX 处理的 OPC 和少突胶质细胞中的基因表达变化有限。用相同的处理方法,小胶质细胞在 DEX 加入后显示出深刻和全面的变化;一个意外的发现是,转录因子 Olig1 被鉴定为小胶质细胞中 DEX 反应基因,Olig1 是髓鞘形成的主要调节因子。我们的数据表明,CS 诱导的髓鞘延迟不太可能是由于 DEX 对 OPC 或少突胶质细胞的直接作用引起的,可能是由于其他神经细胞(如免疫成分)的改变引起的。据我们所知,这是首次对 CS 对神经胶质细胞的影响进行比较分子和细胞分析,以研究这种主要抗炎药物类别的靶点,作为髓鞘缺陷的基础。