Institut für Chemie und Biochemie, Freie Universität Berlin , Takustr. 3, 14195 Berlin, Germany.
J Am Chem Soc. 2013 Dec 4;135(48):18160-75. doi: 10.1021/ja408988z. Epub 2013 Nov 21.
Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism.
使用 (15)N 固态 NMR,我们研究了与丙氨酸消旋酶 (AlaR)、天冬氨酸氨基转移酶 (AspAT) 和聚赖氨酸内部亚胺键相连的辅酶吡哆醛 5'-磷酸 (PLP) 的质子化和氢键状态。PLP 吡啶氮的质子化以及酚氧(烯醇式)到亚胺氮(酮亚胺式)的偶联质子转移通常被认为是酶催化反应初始步骤(转氨基)的前提。实际上,通过在 AspAT 中使用 (15)N NMR 和氢键相关,我们观察到一个强烈的天冬氨酸-吡啶氮氢键,其中 H 位于氮上。水合后,这种氢键得以维持。相比之下,在固态冻干的 AlaR 中,我们发现吡啶氮既没有质子化也没有与邻近的精氨酸侧链形成氢键。然而,水合作用建立了一个与吡啶的弱氢键。为了阐明 AlaR 是如何被激活的,我们对通过与聚赖氨酸冻干形成的同位素标记的 PLP 亚胺进行了 (13)C 和 (15)N 固态 NMR 实验。在干燥的固体中,仅观察到烯醇式互变异构体。然而,在用气态水或气态干 HCl 处理后,观察到涉及酮亚胺互变异构体的快速可逆质子转移。水解需要水和 HCl 的共同作用。在 pH 9 下与天冬氨酸形成外部亚胺也会产生通过与第二个天冬氨酸相互作用稳定的酮亚胺形式,可能通过氢键与酚氧相互作用。我们假设 O-质子化是 PLP 激活的有效机制,就像 N-质子化一样,不能进行 N-质子化的酶采用这种机制。