Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
J Am Chem Soc. 2011 Sep 21;133(37):14823-30. doi: 10.1021/ja2061006. Epub 2011 Aug 24.
Pyridoxal 5'-phosphate (PLP; vitamin B(6))-catalyzed reactions have been well studied, both on enzymes and in solution, due to the variety of important reactions this cofactor catalyzes in nitrogen metabolism. Three functional groups are central to PLP catalysis: the C4' aldehyde, the O3' phenol, and the N1 pyridine nitrogen. In the literature, the pyridine nitrogen has traditionally been assumed to be protonated in enzyme active sites, with the protonated pyridine ring providing resonance stabilization of carbanionic intermediates. This assumption is certainly correct for some PLP enzymes, but the structures of other active sites are incompatible with protonation of N1, and, consequently, these enzymes are expected to use PLP in the N1-unprotonated form. For example, aspartate aminotransferase protonates the pyridine nitrogen for catalysis of transamination, while both alanine racemase and O-acetylserine sulfhydrylase are expected to maintain N1 in the unprotonated, formally neutral state for catalysis of racemization and β-elimination. Herein, kinetic results for these three enzymes reconstituted with 1-deazapyridoxal 5'-phosphate, an isosteric analogue of PLP lacking the pyridine nitrogen, are compared to those for the PLP enzyme forms. They demonstrate that the pyridine nitrogen is vital to the 1,3-prototropic shift central to transamination, but not to reactions catalyzed by alanine racemase or O-acetylserine sulfhydrylase. Not all PLP enzymes require the electrophilicity of a protonated pyridine ring to enable formation of carbanionic intermediates. It is proposed that modulation of cofactor electrophilicity plays a central role in controlling reaction specificity in PLP enzymes.
吡哆醛 5'-磷酸(PLP;维生素 B(6))催化的反应已经在酶和溶液中得到了很好的研究,这是由于该辅因子在氮代谢中催化了多种重要反应。PLP 催化的三个功能基团是:C4'醛、O3'苯酚和 N1 吡啶氮。在文献中,吡啶氮传统上被假定在酶活性中心质子化,质子化的吡啶环为碳负离子中间体提供共振稳定性。对于一些 PLP 酶来说,这种假设当然是正确的,但其他活性中心的结构与 N1 的质子化不兼容,因此,这些酶预计将以未质子化的 PLP 形式使用。例如,天冬氨酸转氨酶在转氨作用中质子化吡啶氮,而丙氨酸消旋酶和 O-乙酰丝氨酸巯基酶都预计在催化消旋化和β-消除时保持 N1 未质子化,呈中性形式。在此,用 1-去氮吡哆醛 5'-磷酸(PLP 的等排类似物,缺少吡啶氮)重建的这三种酶的动力学结果与 PLP 酶形式的结果进行了比较。它们表明,吡啶氮对转氨作用中 1,3-质子迁移至关重要,但对丙氨酸消旋酶或 O-乙酰丝氨酸巯基酶催化的反应则不然。并非所有 PLP 酶都需要质子化吡啶环的亲电性来形成碳负离子中间体。有人提出,辅因子亲电性的调节在控制 PLP 酶的反应特异性方面起着核心作用。