Department of Chemistry and Biochemistry, Arizona State University , Tempe, AZ 85287, U.S.A.
Anal Chem. 2013 Dec 3;85(23):11427-34. doi: 10.1021/ac402493u. Epub 2013 Nov 11.
Self-assembled DNA nanostructures have large potential for nanoelectronic circuitry, targeted drug delivery, and intelligent sensing. Their applications require suitable methods for manipulation and nanoscale assembly as well as adequate concentration, purification, and separation methods. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro- and nanometer-sized objects. In order to exploit iDEP for DNA nanoassemblies, a detailed understanding of the underlying polarization and dielectrophoretic migration is essential. Here, we explore the dielectrophoretic behavior of six-helix bundle and triangle DNA origamis with identical sequence but large topological difference and reveal a characteristic frequency range of iDEP trapping. Moreover, the confinement of triangle origami in the iDEP trap required larger applied electric fields. To elucidate the observed DEP migration and trapping, we discuss polarizability models for the two species according to their structural difference complemented by numerical simulations, revealing a contribution of the electrophoretic transport of the DNA origami species in the iDEP trapping regions. The numerical model showed reasonable agreement with experiments at lower frequency. However, the extension of the iDEP trapping regions observed experimentally deviated considerably at higher frequencies. Our study demonstrates for the first time that DNA origami species can be successfully trapped and manipulated by iDEP and reveals distinctive iDEP behavior of the two DNA origamis. The experimentally observed trapping regimes will facilitate future exploration of DNA origami manipulation and assembly at the nano- and microscale as well as other applications of these nanoassemblies with iDEP.
自组装 DNA 纳米结构在纳米电子电路、靶向药物输送和智能传感方面具有巨大的潜力。它们的应用需要合适的方法来进行操作和纳米级组装,以及足够的浓度、纯化和分离方法。基于绝缘体的介电泳(iDEP)为微纳米尺寸物体的操作提供了一种高效且无基质的方法。为了利用 iDEP 对 DNA 纳米组装体进行操作,需要深入了解其基础的极化和介电泳迁移现象。在这里,我们研究了具有相同序列但拓扑差异较大的六螺旋束和三角形 DNA 折纸的介电泳行为,并揭示了 iDEP 捕获的特征频率范围。此外,三角形折纸在 iDEP 陷阱中的限制需要更大的外加电场。为了阐明观察到的 DEP 迁移和捕获,我们根据两种物质的结构差异讨论了它们的极化率模型,并辅以数值模拟,揭示了 DNA 折纸物质在 iDEP 捕获区域中的电泳传输的贡献。数值模型在较低频率下与实验结果具有较好的一致性。然而,实验中观察到的 iDEP 捕获区域的扩展在较高频率下偏差较大。我们的研究首次证明了 DNA 折纸物质可以通过 iDEP 成功捕获和操作,并揭示了两种 DNA 折纸物质独特的 iDEP 行为。实验观察到的捕获区域将有助于未来在纳米和微米尺度上对 DNA 折纸的操作和组装以及这些纳米组装体在 iDEP 中的其他应用进行探索。