Suppr超能文献

直流和低频交流场下基于非线性绝缘子的电动微系统的最新进展:综述。

The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review.

机构信息

Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.

出版信息

Anal Bioanal Chem. 2022 Jan;414(2):885-905. doi: 10.1007/s00216-021-03687-9. Epub 2021 Oct 19.

Abstract

This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.

摘要

这篇综述文章概述了基于电介质的电泳(iDEP)领域的发展历程;特别是,它集中于基于电介质的电动(iEK)系统,这些系统受到直流和低频(<1 kHz)交流电场的刺激。本文涵盖了 iDEP 作为一个研究领域的兴起,在这个领域中,许多不同的器件设计被开发出来,从带有绝缘柱阵列的微通道到具有弯曲壁和纳米/微管的器件。所有这些系统都允许对广泛的粒子进行操纵和分离,范围从大分子到微生物,包括临床和生物医学应用。最近的实验报告,得到了该领域物理和胶体重要理论研究的支持,引起了人们对这些系统中第二类电泳的关注。这些最近的发现表明,DEP 不是粒子捕获的主要驱动力,就像过去二十年来人们所认为的那样。这项新的研究表明,在直流和低频交流电势下,粒子的捕获主要是由于电渗流和电泳效应(线性和非线性)之间的平衡;尽管这些系统中存在 DEP,但它不是主要力。考虑到这些最近的研究,建议将该领域从直流-iDEP 重新命名为直流-iEK(以及低频交流-iDEP 为低频交流-iEK)。虽然仍需要进行大量研究,但这是微尺度 EK 系统领域令人兴奋的时刻,因为这些新发现似乎解释了在 iEK 器件中建模粒子迁移和捕获的挑战,并为粒子捕获背后的机制提供了更好的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验