Suppr超能文献

弥合理论与实验之间的差距,深入理解锤头核酶催化作用。

Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis.

机构信息

Center for Integrative Proteomics Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.

出版信息

Prog Mol Biol Transl Sci. 2013;120:25-91. doi: 10.1016/B978-0-12-381286-5.00002-0.

Abstract

Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg(2+) ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg(2+) ion or multiple Na(+) ions, one of which is also in a bridging coordination pattern. In the case of a single Mg(2+) ion bound in the active site, the Mg(2+) ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2'). As the reaction proceeds, the Mg(2+) ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2'. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis.

摘要

在此,我们通过一种多尺度模拟策略总结了我们在理解锤头核酶 (HHR) 催化作用方面的进展。模拟结果共同描绘了 HHR 催化作用的图景:HHR 首先折叠形成一个带负电的活性口袋,以招募一定数量的阳离子电荷,要么是一个 Mg(2+)离子,要么是多个单价阳离子。具有良好直线拟合的催化活性构象得到特定的金属离子配位模式的支持,涉及一个桥接 Mg(2+)离子或多个 Na(+)离子,其中一个离子也处于桥接配位模式。在活性位点中结合一个单 Mg(2+)离子的情况下,Mg(2+)离子经历与亲核试剂 (C17:O2') 的去质子化偶联的迁移。随着反应的进行,Mg(2+)离子稳定了离去基团的累积电荷,并显著增加了 G8:O2'的一般酸能力。进一步的计算突变模拟表明,由于突变引起的破坏可能会严重影响反应不同阶段的 HHR 催化作用。模拟结果支持的催化机制与现有的结构和生化实验一致,它们共同推进了我们对 HHR 催化作用的理解。

相似文献

引用本文的文献

8
Multiscale methods for computational RNA enzymology.计算RNA酶学的多尺度方法。
Methods Enzymol. 2015;553:335-74. doi: 10.1016/bs.mie.2014.10.064. Epub 2015 Jan 22.

本文引用的文献

3
AM1/d Parameters for Magnesium in Metalloenzymes.金属酶中镁的 AM1/d 参数。
J Chem Theory Comput. 2006 Jul;2(4):1050-6. doi: 10.1021/ct600092c.
6
Controlling ribozyme activity by metal ions.金属离子对核酶活性的调控。
Curr Opin Chem Biol. 2010 Apr;14(2):269-75. doi: 10.1016/j.cbpa.2009.11.024. Epub 2010 Jan 4.
7
Model systems: how chemical biologists study RNA.模型系统:化学生物学家如何研究 RNA。
Curr Opin Chem Biol. 2009 Dec;13(5-6):660-8. doi: 10.1016/j.cbpa.2009.09.028. Epub 2009 Oct 29.
9
Biochemistry. The evolution of ribozyme chemistry.生物化学。核酶化学的进化。
Science. 2009 Mar 13;323(5920):1436-8. doi: 10.1126/science.1169231.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验