Suppr超能文献

弥合理论与实验之间的差距,深入理解锤头核酶催化作用。

Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis.

机构信息

Center for Integrative Proteomics Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.

出版信息

Prog Mol Biol Transl Sci. 2013;120:25-91. doi: 10.1016/B978-0-12-381286-5.00002-0.

Abstract

Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg(2+) ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg(2+) ion or multiple Na(+) ions, one of which is also in a bridging coordination pattern. In the case of a single Mg(2+) ion bound in the active site, the Mg(2+) ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2'). As the reaction proceeds, the Mg(2+) ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2'. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis.

摘要

在此,我们通过一种多尺度模拟策略总结了我们在理解锤头核酶 (HHR) 催化作用方面的进展。模拟结果共同描绘了 HHR 催化作用的图景:HHR 首先折叠形成一个带负电的活性口袋,以招募一定数量的阳离子电荷,要么是一个 Mg(2+)离子,要么是多个单价阳离子。具有良好直线拟合的催化活性构象得到特定的金属离子配位模式的支持,涉及一个桥接 Mg(2+)离子或多个 Na(+)离子,其中一个离子也处于桥接配位模式。在活性位点中结合一个单 Mg(2+)离子的情况下,Mg(2+)离子经历与亲核试剂 (C17:O2') 的去质子化偶联的迁移。随着反应的进行,Mg(2+)离子稳定了离去基团的累积电荷,并显著增加了 G8:O2'的一般酸能力。进一步的计算突变模拟表明,由于突变引起的破坏可能会严重影响反应不同阶段的 HHR 催化作用。模拟结果支持的催化机制与现有的结构和生化实验一致,它们共同推进了我们对 HHR 催化作用的理解。

相似文献

1
Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis.
Prog Mol Biol Transl Sci. 2013;120:25-91. doi: 10.1016/B978-0-12-381286-5.00002-0.
2
Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation.
J Mol Biol. 2009 Apr 24;388(1):195-206. doi: 10.1016/j.jmb.2009.02.054. Epub 2009 Mar 2.
3
Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation.
J Am Chem Soc. 2008 Mar 12;130(10):3053-64. doi: 10.1021/ja076529e. Epub 2008 Feb 14.
5
Probing general acid catalysis in the hammerhead ribozyme.
J Am Chem Soc. 2009 Jan 28;131(3):1135-43. doi: 10.1021/ja807790e.
7
Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.
J Mol Biol. 2013 Oct 23;425(20):3790-8. doi: 10.1016/j.jmb.2013.05.017. Epub 2013 May 25.
8
Computational mutagenesis studies of hammerhead ribozyme catalysis.
J Am Chem Soc. 2010 Sep 29;132(38):13505-18. doi: 10.1021/ja105956u.

引用本文的文献

2
The L-platform/L-scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme design.
RNA. 2020 Feb;26(2):111-125. doi: 10.1261/rna.071894.119. Epub 2019 Nov 27.
3
5
Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations.
Biochemistry. 2017 Jun 20;56(24):2985-2994. doi: 10.1021/acs.biochem.6b01192. Epub 2017 Jun 12.
7
Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids.
J Phys Chem B. 2015 Dec 17;119(50):15460-70. doi: 10.1021/acs.jpcb.5b10423. Epub 2015 Dec 3.
8
Multiscale methods for computational RNA enzymology.
Methods Enzymol. 2015;553:335-74. doi: 10.1016/bs.mie.2014.10.064. Epub 2015 Jan 22.

本文引用的文献

3
AM1/d Parameters for Magnesium in Metalloenzymes.
J Chem Theory Comput. 2006 Jul;2(4):1050-6. doi: 10.1021/ct600092c.
6
Controlling ribozyme activity by metal ions.
Curr Opin Chem Biol. 2010 Apr;14(2):269-75. doi: 10.1016/j.cbpa.2009.11.024. Epub 2010 Jan 4.
7
Model systems: how chemical biologists study RNA.
Curr Opin Chem Biol. 2009 Dec;13(5-6):660-8. doi: 10.1016/j.cbpa.2009.09.028. Epub 2009 Oct 29.
8
Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell.
RNA. 2009 Aug;15(8):1443-61. doi: 10.1261/rna.1534709. Epub 2009 Jun 26.
9
Biochemistry. The evolution of ribozyme chemistry.
Science. 2009 Mar 13;323(5920):1436-8. doi: 10.1126/science.1169231.
10
Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation.
J Mol Biol. 2009 Apr 24;388(1):195-206. doi: 10.1016/j.jmb.2009.02.054. Epub 2009 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验