Suppr超能文献

锤头状核酶活性位点中的阈值占有率和特定阳离子结合模式是活性构象所必需的。

Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation.

作者信息

Lee Tai-Sung, Giambaşu George M, Sosa Carlos P, Martick Monika, Scott William G, York Darrin M

机构信息

Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Mol Biol. 2009 Apr 24;388(1):195-206. doi: 10.1016/j.jmb.2009.02.054. Epub 2009 Mar 2.

Abstract

The relationship between formation of active in-line attack conformations and monovalent (Na(+)) and divalent (Mg(2+)) metal ion binding in hammerhead ribozyme (HHR) has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of the threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence and in the absence of a Mg(2+) in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the HHR folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of HHR catalysis and support the supposition that Mg(2+), in addition to stabilizing active conformations, plays a specific chemical role in catalysis.

摘要

通过分子动力学模拟,研究了锤头状核酶(HHR)中活性线性攻击构象的形成与单价(Na⁺)和二价(Mg²⁺)金属离子结合之间的关系。为了稳定带负电荷基团之间的排斥力,在活性位点存在和不存在Mg²⁺的情况下,在反应物和活化前体状态中均观察到对金属离子阈值占有率的不同要求。离子的特定桥连配位模式与活性线性攻击构象的形成相关,并且在两种情况下均能适应。此外,模拟结果表明,HHR折叠形成一个吸引高局部正电荷浓度的负电募集口袋。目前的模拟有助于协调探测HHR催化的金属离子敏感性的实验,并支持以下假设:Mg²⁺除了稳定活性构象外,还在催化中发挥特定的化学作用。

相似文献

1
Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation.
J Mol Biol. 2009 Apr 24;388(1):195-206. doi: 10.1016/j.jmb.2009.02.054. Epub 2009 Mar 2.
2
Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis.
Prog Mol Biol Transl Sci. 2013;120:25-91. doi: 10.1016/B978-0-12-381286-5.00002-0.
3
Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation.
J Am Chem Soc. 2008 Mar 12;130(10):3053-64. doi: 10.1021/ja076529e. Epub 2008 Feb 14.
5
Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions.
Biochemistry. 2011 Apr 5;50(13):2672-82. doi: 10.1021/bi2000164. Epub 2011 Mar 9.
7
Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.
J Mol Biol. 2013 Oct 23;425(20):3790-8. doi: 10.1016/j.jmb.2013.05.017. Epub 2013 May 25.
9
The crystal structure of an all-RNA hammerhead ribozyme.
Nucleic Acids Symp Ser. 1995(34):214-6. doi: 10.2210/pdb1mme/pdb.
10
EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding.
Biochemistry. 2005 Sep 27;44(38):12870-8. doi: 10.1021/bi050549g.

引用本文的文献

2
Surface-Accelerated String Method for Locating Minimum Free Energy Paths.
J Chem Theory Comput. 2024 Mar 12;20(5):2058-2073. doi: 10.1021/acs.jctc.3c01401. Epub 2024 Feb 17.
3
RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis.
J Phys Chem B. 2022 Aug 18;126(32):5982-5990. doi: 10.1021/acs.jpcb.2c03727. Epub 2022 Jul 21.
4
Bulky cations greatly increase the turnover of a native hammerhead ribozyme.
RSC Adv. 2019 Nov 4;9(61):35820-35824. doi: 10.1039/c9ra06797c. eCollection 2019 Oct 31.
5
The L-platform/L-scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme design.
RNA. 2020 Feb;26(2):111-125. doi: 10.1261/rna.071894.119. Epub 2019 Nov 27.
6
8
Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme.
RNA. 2018 Nov;24(11):1542-1554. doi: 10.1261/rna.067579.118. Epub 2018 Aug 15.
9
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
10
Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations.
Biochemistry. 2017 Jun 20;56(24):2985-2994. doi: 10.1021/acs.biochem.6b01192. Epub 2017 Jun 12.

本文引用的文献

1
Highly active low magnesium hammerhead ribozyme.
J Biochem. 2009 Apr;145(4):451-9. doi: 10.1093/jb/mvn182. Epub 2009 Jan 4.
3
The ionic environment determines ribozyme cleavage rate by modulation of nucleobase pK a.
RNA. 2008 Sep;14(9):1942-9. doi: 10.1261/rna.1102308. Epub 2008 Aug 12.
5
Origin of mutational effects at the C3 and G8 positions on hammerhead ribozyme catalysis from molecular dynamics simulations.
J Am Chem Soc. 2008 Jun 11;130(23):7168-9. doi: 10.1021/ja711242b. Epub 2008 May 14.
6
Solvent structure and hammerhead ribozyme catalysis.
Chem Biol. 2008 Apr;15(4):332-42. doi: 10.1016/j.chembiol.2008.03.010.
7
Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis.
J Am Chem Soc. 2008 Apr 9;130(14):4680-91. doi: 10.1021/ja0759141. Epub 2008 Mar 18.
8
Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation.
J Am Chem Soc. 2008 Mar 12;130(10):3053-64. doi: 10.1021/ja076529e. Epub 2008 Feb 14.
9
Ribozymes.
Curr Opin Struct Biol. 2007 Jun;17(3):280-6. doi: 10.1016/j.sbi.2007.05.003. Epub 2007 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验