Environmental Health and Disease Laboratory, Dept. of Environmental Health Sciences, Univ. of South Carolina, Columbia, SC 29208.
Am J Physiol Gastrointest Liver Physiol. 2013 Dec;305(12):G950-63. doi: 10.1152/ajpgi.00235.2013. Epub 2013 Oct 24.
Recent studies indicate that metabolic oxidative stress, autophagy, and inflammation are hallmarks of nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanisms that link these important events in NASH remain unclear. In this study, we investigated the mechanistic role of purinergic receptor X7 (P2X7) in modulating autophagy and resultant inflammation in NASH in response to metabolic oxidative stress. The study uses two rodent models of NASH. In one of them, a CYP2E1 substrate bromodichloromethane is used to induce metabolic oxidative stress and NASH. Methyl choline-deficient diet feeding is used for the other NASH model. CYP2E1 and P2X7 receptor gene-deleted mice are used to establish their roles in regulating metabolic oxidative stress and autophagy. Autophagy gene expression, protein levels, confocal microscopy based-immunolocalization of lysosome-associated membrane protein (LAMP)2A and histopathological analysis were performed. CYP2E1-dependent metabolic oxidative stress induced increases in P2X7 receptor expression and chaperone-mediated autophagy markers LAMP2A and heat shock cognate 70 but caused depletion of light chain 3 isoform B (LC3B) protein levels. P2X7 receptor gene deletion significantly decreased LAMP2A and inflammatory indicators while significantly increasing LC3B protein levels compared with wild-type mice treated with bromodichloromethane. P2X7 receptor-deleted mice were also protected from NASH pathology as evidenced by decreased inflammation and fibrosis. Our studies establish that P2X7 receptor is a key regulator of autophagy induced by metabolic oxidative stress in NASH, thereby modulating hepatic inflammation. Furthermore, our findings presented here form a basis for P2X7 receptor as a potential therapeutic target in the treatment for NASH.
最近的研究表明,代谢性氧化应激、自噬和炎症是非酒精性脂肪性肝炎(NASH)进展的标志。然而,将这些 NASH 中的重要事件联系起来的分子机制尚不清楚。在这项研究中,我们研究了嘌呤能受体 X7(P2X7)在代谢性氧化应激下调节 NASH 中自噬和随之发生的炎症的机制作用。该研究使用了两种 NASH 啮齿动物模型。其中一种模型使用 CYP2E1 底物溴二氯甲烷诱导代谢性氧化应激和 NASH。另一种 NASH 模型使用缺乏甲基胆碱的饮食喂养。使用 CYP2E1 和 P2X7 受体基因缺失小鼠来建立它们在调节代谢性氧化应激和自噬中的作用。进行自噬基因表达、蛋白水平、溶酶体相关膜蛋白(LAMP)2A 的共聚焦显微镜免疫定位和组织病理学分析。CYP2E1 依赖性代谢性氧化应激诱导 P2X7 受体表达增加和伴侣介导的自噬标志物 LAMP2A 和热休克同源物 70,但导致轻链 3 同工型 B(LC3B)蛋白水平耗竭。与用溴二氯甲烷处理的野生型小鼠相比,P2X7 受体基因缺失显著降低了 LAMP2A 和炎症指标,同时显著增加了 LC3B 蛋白水平。P2X7 受体缺失的小鼠还免受 NASH 病理的影响,表现为炎症和纤维化减少。我们的研究确立了 P2X7 受体是 NASH 中代谢性氧化应激诱导的自噬的关键调节剂,从而调节肝炎症。此外,我们在这里提出的研究结果为 P2X7 受体作为 NASH 治疗的潜在治疗靶点提供了依据。