Po^le de Physico-Chimie Théorique, École Normale Supérieure, UMR 8640 CNRS-ENS-UPMC, 24 rue Lhomond, 75005, Paris, France.
J Chem Phys. 2013 Oct 21;139(15):154101. doi: 10.1063/1.4824737.
We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.
我们提出了最近引入的水分子密度泛函理论的扩展[G. Jeanmairet 等人,J. Phys. Chem. Lett. 4, 619 (2013)],以研究各种大小的疏水分子的溶剂化作用,范围从埃到纳米。该理论基于过剩自由能的二次展开,涉及两个经典密度场:粒子密度和多极极化密度。其实现需要输入水分子的分子模型和三个可测量的体性质,即结构因子和 k 相关的纵向和横向介电常数。发现可以很好地再现小疏水分子周围的精细三维水结构。相比之下,当疏水溶质尺寸增大时,计算出的溶剂化自由能似乎被高估了,并且没有表现出正确的定性行为。为了纠正这些缺点,我们本着 Lum-Chandler-Weeks 理论的精神,通过在密度的二次项之外补充一个截断的硬球函数来补充功能,使得到的功能与液体-蒸汽共存的范德瓦尔斯理论在长程上兼容。与现有的分子模拟相比,该方法产生了合理的溶剂化结构和自由能,对于越来越大的硬球或软球,在纳米尺度上从体积驱动转变为表面驱动的定性转变是正确的。