Jeanmairet Guillaume, Rotenberg Benjamin, Levesque Maximilien, Borgis Daniel, Salanne Mathieu
Sorbonne Université , CNRS , Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux , PHENIX , F-75005 Paris , France . Email:
Réseau sur le Stockage Électrochimique de l'Énergie (RS2E) , FR CNRS 3459 , 80039 Amiens Cedex , France.
Chem Sci. 2018 Dec 12;10(7):2130-2143. doi: 10.1039/c8sc04512g. eCollection 2019 Feb 21.
Beyond the dielectric continuum description initiated by Marcus theory, the standard theoretical approach to study electron transfer (ET) reactions in solution or at interfaces is to use classical force field or molecular dynamics simulations. We present here an alternative method based on liquid-state theory, namely molecular density functional theory, which is numerically much more efficient than simulations while still retaining the molecular nature of the solvent. We begin by reformulating molecular ET theory in a density functional language and show how to compute the various observables characterizing ET reactions from an ensemble of density functional minimizations. In particular, we define within that formulation the relevant order parameter of the reaction, the so-called vertical energy gap, and determine the Marcus free energy curves of both reactant and product states along that coordinate. Important thermodynamic quantities such as the reaction free energy and the reorganization free energies follow. We assess the validity of the method by studying the model Cl → Cl and Cl → Cl ET reactions in bulk water for which molecular dynamics results are available. The anionic case is found to violate the standard Marcus theory. Finally, we take advantage of the computational efficiency of the method to study the influence of a solid-solvent interface on the ET, by investigating the evolution of the reorganization free energy of the Cl → Cl reaction when the atom approaches an atomistically resolved wall.
除了由马库斯理论引发的介电连续体描述之外,研究溶液或界面中电子转移(ET)反应的标准理论方法是使用经典力场或分子动力学模拟。我们在此提出一种基于液态理论的替代方法,即分子密度泛函理论,它在数值上比模拟更有效,同时仍保留溶剂的分子性质。我们首先用密度泛函语言重新表述分子ET理论,并展示如何从密度泛函极小化的系综中计算表征ET反应的各种可观测量。特别是,我们在该表述中定义反应的相关序参量,即所谓的垂直能隙,并沿着该坐标确定反应物和产物态的马库斯自由能曲线。重要的热力学量,如反应自由能和重组自由能随之而来。我们通过研究在大量水中的模型Cl→Cl和Cl→Cl ET反应来评估该方法的有效性,对于这些反应,分子动力学结果是可用的。发现阴离子情况违反了标准马库斯理论。最后,我们利用该方法的计算效率,通过研究当原子接近原子分辨的壁时Cl→Cl反应的重组自由能的演变,来研究固 - 溶剂界面对ET的影响。