Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA.
Phys Rev Lett. 2013 Oct 11;111(15):155501. doi: 10.1103/PhysRevLett.111.155501. Epub 2013 Oct 7.
Using ab initio molecular dynamics simulations, we perform a comparative study of the defect accumulation process in silicon carbide (SiC) and zirconium carbide (ZrC). Interestingly, we find that the fcc Si sublattice in SiC spontaneously and gradually collapses following the continuous introduction of C Frenkel pairs (FPs). Above a critical amorphization dose of ~0.33 displacements per atom (dpa), the pair correlation function exhibits no long-range order. In contrast, the fcc Zr sublattice in ZrC remains structurally stable against C sublattice displacements up to the highest dose of 1.0 dpa considered. Consequently, ZrC cannot be amorphized by the accumulation of C FPs. We propose defect-induced mechanical instability as the key mechanism driving the amorphization of SiC under electron irradiation.
使用从头算分子动力学模拟,我们对碳化硅(SiC)和碳化锆(ZrC)中的缺陷积累过程进行了比较研究。有趣的是,我们发现,随着 C 弗伦克尔对(FPs)的不断引入,SiC 中的 fcc Si 亚晶格会自发且逐渐坍塌。在超过约 0.33 个原子位移/原子(dpa)的临界非晶化剂量下,配位数函数没有长程有序。相比之下,ZrC 中的 fcc Zr 亚晶格在考虑的最高 1.0 dpa 剂量下,仍能抵抗 C 亚晶格位移而保持结构稳定。因此,ZrC 不能通过 C FPs 的积累而非晶化。我们提出缺陷诱导的机械不稳定性是电子辐照下 SiC 非晶化的关键机制。