Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , Singapore 117576.
Anal Chem. 2013 Dec 3;85(23):11297-303. doi: 10.1021/ac402059v. Epub 2013 Nov 12.
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.
我们报告了一种新的方法,该方法利用熔融石英和蓝宝石拉曼信号的多元参考信号,以及来自球透镜光纤拉曼探头的拉曼信号,实时对体内组织拉曼测量进行定量分析。偏最小二乘(PLS)回归建模用于从球透镜光纤拉曼探头中提取特征内部参考拉曼信号(例如,突出的熔融石英玻色子峰(~130 cm(-1))的肩;明显的蓝宝石球透镜峰(380、417、646 和 751 cm(-1))),用于光纤拉曼光谱的定量分析。为了评估这种新的多元参考技术的分析价值,使用快速拉曼光谱系统结合球透镜光纤拉曼探头,在 785nm 激光激发功率为 5 至 65mW 的范围内,对体内口腔组织进行拉曼测量(n=25 名受试者)。通过留一受试者外交叉验证,可获得基于激光激发功率变化的准确线性关系(R(2)=0.981),其交叉验证均方根误差(RMSECV)为 2.5mW,优于普通的单变量参考方法(RMSE=6.2mW)。当我们独立应用多元方法于 5 名新受试者(n=166 个光谱)时,还可以实现实时的激光功率预测的预测均方根误差(RMSEP)为 2.4mW(R(2)=0.985)。我们进一步将多元参考技术应用于明胶组织体模的定量分析,在不依赖激光激发功率变化的情况下,获得约 2.0%的 RMSEP(R(2)=0.998)。本工作表明,多元参考技术可用于原位监测和校正激光激发功率和光纤耦合效率的变化,以实现组织拉曼强度的标准化,从而实现体内组织拉曼测量的定量分析,这在具有挑战性的拉曼内窥镜应用中特别有吸引力。