Suppr超能文献

用于突变检测的恶性细胞核百分比的自动客观测定。

Automated objective determination of percentage of malignant nuclei for mutation testing.

作者信息

Viray Hollis, Coulter Madeline, Li Kevin, Lane Kristin, Madan Aruna, Mitchell Kisha, Schalper Kurt, Hoyt Clifford, Rimm David L

机构信息

*Department of Pathology, Yale School of Medicine, New Haven, CT †Caliper Life Sciences (a division of Perkin Elmer), Hopkinton, MA.

出版信息

Appl Immunohistochem Mol Morphol. 2014 May-Jun;22(5):363-71. doi: 10.1097/PAI.0b013e318299a1f6.

Abstract

Detection of DNA mutations in tumor tissue can be a critical companion diagnostic test before prescription of a targeted therapy. Each method for detection of these mutations is associated with an analytic sensitivity that is a function of the percentage of tumor cells present in the specimen. Currently, tumor cell percentage is visually estimated resulting in an ordinal and highly variant result for a biologically continuous variable. We proposed that this aspect of DNA mutation testing could be standardized by developing a computer algorithm capable of accurately determining the percentage of malignant nuclei in an image of a hematoxylin and eosin-stained tissue. Using inForm software, we developed an algorithm, to calculate the percentage of malignant cells in histologic specimens of colon adenocarcinoma. A criterion standard was established by manually counting malignant and benign nuclei. Three pathologists also estimated the percentage of malignant nuclei in each image. Algorithm #9 had a median deviation from the criterion standard of 5.4% on the training set and 6.2% on the validation set. Compared with pathologist estimation, Algorithm #9 showed a similar ability to determine percentage of malignant nuclei. This method represents a potential future tool to assist in determining the percent of malignant nuclei present in a tissue section. Further validation of this algorithm or an improved algorithm may have value to more accurately assess percentage of malignant cells for companion diagnostic mutation testing.

摘要

在开具靶向治疗药物之前,检测肿瘤组织中的DNA突变可能是一项关键的伴随诊断测试。每种检测这些突变的方法都与分析灵敏度相关,而分析灵敏度是样本中肿瘤细胞百分比的函数。目前,肿瘤细胞百分比是通过视觉估计得出的,对于一个生物学上连续的变量,其结果是序数且高度可变的。我们提出,可以通过开发一种能够准确确定苏木精和伊红染色组织图像中恶性细胞核百分比的计算机算法,来规范DNA突变检测的这一方面。我们使用inForm软件开发了一种算法,用于计算结肠腺癌组织学标本中恶性细胞的百分比。通过手动计数恶性和良性细胞核建立了一个标准对照。三位病理学家也对每张图像中的恶性细胞核百分比进行了估计。算法#9在训练集上与标准对照的中位偏差为5.4%,在验证集上为6.2%。与病理学家的估计相比,算法#9在确定恶性细胞核百分比方面表现出相似的能力。这种方法代表了一种未来可能有助于确定组织切片中恶性细胞核百分比的工具。对该算法或改进算法的进一步验证,可能对于更准确地评估用于伴随诊断突变检测的恶性细胞百分比具有价值。

相似文献

1
Automated objective determination of percentage of malignant nuclei for mutation testing.
Appl Immunohistochem Mol Morphol. 2014 May-Jun;22(5):363-71. doi: 10.1097/PAI.0b013e318299a1f6.
3
Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.
Cytometry A. 2017 Aug;91(8):785-793. doi: 10.1002/cyto.a.23175. Epub 2017 Jul 20.
8
Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: A comprehensive tissue structure segmentation method.
Comput Methods Programs Biomed. 2018 Mar;155:109-120. doi: 10.1016/j.cmpb.2017.12.004. Epub 2017 Dec 12.
9
Automated characterization and counting of Ki-67 protein for breast cancer prognosis: A quantitative immunohistochemistry approach.
Comput Methods Programs Biomed. 2017 Feb;139:149-161. doi: 10.1016/j.cmpb.2016.11.002. Epub 2016 Nov 9.

引用本文的文献

1
Automated determination of tumor cell percentages in whole slide images: A nuclear classification study for molecular pathology tests.
J Pathol Inform. 2025 May 16;18:100451. doi: 10.1016/j.jpi.2025.100451. eCollection 2025 Aug.
3
Deep learning based tumor-stroma ratio scoring in colon cancer correlates with microscopic assessment.
J Pathol Inform. 2023 Jan 20;14:100191. doi: 10.1016/j.jpi.2023.100191. eCollection 2023.
6
Obtaining spatially resolved tumor purity maps using deep multiple instance learning in a pan-cancer study.
Patterns (N Y). 2021 Dec 9;3(2):100399. doi: 10.1016/j.patter.2021.100399. eCollection 2022 Feb 11.
8
Translational AI and Deep Learning in Diagnostic Pathology.
Front Med (Lausanne). 2019 Oct 1;6:185. doi: 10.3389/fmed.2019.00185. eCollection 2019.
9
Diagnostic assessment of osteosarcoma chemoresistance based on Virtual Clinical Trials.
Med Hypotheses. 2015 Sep;85(3):348-54. doi: 10.1016/j.mehy.2015.06.015. Epub 2015 Jun 24.

本文引用的文献

1
Optimized algorithm for Sanger sequencing-based EGFR mutation analyses in NSCLC biopsies.
Virchows Arch. 2012 Apr;460(4):407-14. doi: 10.1007/s00428-012-1219-x. Epub 2012 Mar 15.
3
4
Systematic analysis of breast cancer morphology uncovers stromal features associated with survival.
Sci Transl Med. 2011 Nov 9;3(108):108ra113. doi: 10.1126/scitranslmed.3002564.
5
Detection of KRAS mutations in colorectal cancer with Fast COLD-PCR.
Int J Oncol. 2012 Feb;40(2):378-84. doi: 10.3892/ijo.2011.1221. Epub 2011 Oct 4.
7
Molecular genetics external quality assessment pilot scheme for KRAS analysis in metastatic colorectal cancer.
Genet Test Mol Biomarkers. 2011 Nov;15(11):777-83. doi: 10.1089/gtmb.2010.0239. Epub 2011 Aug 18.
9
Comparison of KRAS mutation tests in colorectal cancer patients.
Genet Test Mol Biomarkers. 2011 Nov;15(11):831-4. doi: 10.1089/gtmb.2011.0027. Epub 2011 Jun 23.
10
Metastatic colorectal cancer KRAS genotyping in routine practice: results and pitfalls.
Mod Pathol. 2011 Aug;24(8):1090-100. doi: 10.1038/modpathol.2011.60. Epub 2011 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验