INRA-UPS-INAPG, Station de Génétique Végétale du Moulon, Ferme du Moulon, 91190, Gif sur Yvette, France.
Theor Appl Genet. 1996 Dec;93(8):1193-201. doi: 10.1007/BF00223450.
The estimation of the contribution of an individual quantitative trait locus (QTL) to the variance of a quantitative trait is considered in the framework of an analysis of variance (ANOVA). ANOVA mean squares expectations which are appropriate to the specific case of QTL mapping experiments are derived. These expectations allow the specificities associated with the limited number of genotypes at a given locus to be taken into account. Discrepancies with classical expectations are particularly important for two-class experiments (backcross, recombinant inbred lines, doubled haploid populations) and F2 populations. The result allows us firstly to reconsider the power of experiments (i.e. the probability of detecting a QTL with a given contribution to the variance of the trait). It illustrates that the use of classical formulae for mean squares expectations leads to a strong underestimation of the power of the experiments. Secondly, from the observed mean squares it is possible to estimate directly the variance associated with a locus and the fraction of the total variance associated to this locus (r l (2) ). When compared to other methods, the values estimated using this method are unbiased. Considering unbiased estimators increases in importance when (1) the experimental size is limited; (2) the number of genotypes at the locus of interest is large; and (3) the fraction of the variation associated with this locus is small. Finally, specific mean squares expectations allows us to propose a simple analytical method by which to estimate the confidence interval of r l (2) . This point is particularly important since results indicate that 95% confidence intervals for r l (2) can be rather wide:2-23% for a 10% estimate and 8-34% for a 20% estimate if 100 individuals are considered.
在方差分析 (ANOVA) 的框架内,我们考虑了个体数量性状基因座 (QTL) 对数量性状方差的贡献的估计。推导了适用于 QTL 作图实验具体情况的 ANOVA 均方期望。这些期望允许考虑与特定基因座的有限基因型数量相关的特异性。与经典期望的差异对于两类实验(回交、重组自交系、加倍单倍体群体)和 F2 群体特别重要。该结果首先允许我们重新考虑实验的功效(即检测具有特定性状方差贡献的 QTL 的概率)。它表明,使用经典公式来估计均方期望会导致对实验功效的严重低估。其次,从观察到的均方,可以直接估计与基因座相关的方差以及与该基因座相关的总方差的分数(r l (2) )。与其他方法相比,使用该方法估计的值是无偏的。当 (1) 实验规模有限;(2) 感兴趣基因座的基因型数量较大;并且 (3) 与该基因座相关的变异分数较小,使用无偏估计值的重要性会增加。最后,特定的均方期望允许我们提出一种简单的分析方法来估计 r l (2) 的置信区间。这一点非常重要,因为结果表明 r l (2) 的 95%置信区间可能相当宽:如果考虑 100 个人,则 10%的估计值为 2-23%,20%的估计值为 8-34%。