Suppr超能文献

利用分子标记定位多个数量性状基因座:回交、重组自交系和双单倍体后代的模型。

Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred, and doubled haploid progeny.

机构信息

Department of Crop Science, Oregon State University, 97331, Corvallis, OR, USA.

出版信息

Theor Appl Genet. 1991 Mar;81(3):333-8. doi: 10.1007/BF00228673.

Abstract

To maximize parameter estimation efficiency and statistical power and to estimate epistasis, the parameters of multiple quantitative trait loci (QTLs) must be simultaneously estimated. If multiple QTL affect a trait, then estimates of means of QTL genotypes from individual locus models are statistically biased. In this paper, I describe methods for estimating means of QTL genotypes and recombination frequencies between marker and quantitative trait loci using multilocus backcross, doubled haploid, recombinant inbred, and testcross progeny models. Expected values of marker genotype means were defined using no double or multiple crossover frequencies and flanking markers for linked and unlinked quantitative trait loci. The expected values for a particular model comprise a system of nonlinear equations that can be solved using an interative algorithm, e.g., the Gauss-Newton algorithm. The solutions are maximum likelihood estimates when the errors are normally distributed. A linear model for estimating the parameters of unlinked quantitative trait loci was found by transforming the nonlinear model. Recombination frequency estimators were defined using this linear model. Certain means of linked QTLs are less efficiently estimated than means of unlinked QTLs.

摘要

为了最大限度地提高参数估计效率和统计功效,并估计上位性,必须同时估计多个数量性状基因座 (QTL) 的参数。如果多个 QTL 影响一个性状,那么从单个基因座模型估计 QTL 基因型的平均值在统计上是有偏差的。本文描述了使用多位点回交、双单倍体、重组自交和测交后代模型估计 QTL 基因型和标记与数量性状基因座之间重组频率的方法。使用没有双交叉或多交叉频率和侧翼标记来定义标记基因型平均值的期望值,用于连锁和非连锁数量性状基因座。特定模型的预期值构成了一个非线性方程组,可以使用迭代算法(例如高斯牛顿算法)来求解。当误差呈正态分布时,解是最大似然估计。通过转换非线性模型,找到了用于估计非连锁数量性状基因座参数的线性模型。使用这个线性模型定义了重组频率估计器。某些连锁 QTL 的平均值比非连锁 QTL 的平均值估计效率更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验