Suppr超能文献

通过阶梯式断裂机制提高金属玻璃的疲劳耐久性。

Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

机构信息

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18419-24. doi: 10.1073/pnas.1317715110. Epub 2013 Oct 28.

Abstract

Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.

摘要

块状金属玻璃(BMGs)由于其优异的强度和韧性,现在是结构应用的候选材料。然而,它们的抗疲劳性可能很差且不一致,严重限制了它们作为可靠结构材料的潜力。由于疲劳极限总是受微观小裂纹在微观结构特征处局部停止的控制,因此,整体玻璃中缺乏微观结构,通常再加上其他因素,如剪切带中裂纹形成的容易程度或对腐蚀的高度敏感性,可能导致低疲劳极限(有些约为其拉伸强度的 1/20)和高度可变的疲劳寿命。BMG 基体复合材料可以在这里提供解决方案,因为它们的双相微观结构可以在第二相处阻止剪切带,以防止裂纹超过临界尺寸;在这些条件下,疲劳极限变得与晶态合金相当。在这里,我们报告了一种类似的具有高抗疲劳性但没有第二相的 Pd 基玻璃。这种整体玻璃具有很高的固有韧性,因为广泛的剪切带增殖伴随着空化和裂纹的有效阻塞。我们发现,这种特性可以通过外部裂纹尖端屏蔽进一步提高抗疲劳性,这是在晶态金属中众所周知的机制,但在 BMG 中尚未报道过,即在循环加载的裂纹以高度“之字形”的方式传播,形成粗糙的“阶梯状”轮廓。由此产生的裂纹表面接触(粗糙度诱导的裂纹闭合)将疲劳性能提高到与晶态合金相当的水平,伴随的塑性有助于降低玻璃中的缺陷敏感性,从而提高结构可靠性。

相似文献

4
Recent advances in bulk metallic glasses for biomedical applications.生物医学应用中大块非晶合金的最新进展。
Acta Biomater. 2016 May;36:1-20. doi: 10.1016/j.actbio.2016.03.047. Epub 2016 Apr 1.
5
Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses.大块金属玻璃循环疲劳抗力差问题的解决方案。
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):4986-91. doi: 10.1073/pnas.0900740106. Epub 2009 Mar 16.
7
Fatigue and corrosion of a Pd-based bulk metallic glass in various environments.在不同环境中,基于钯的块状金属玻璃的疲劳和腐蚀。
Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4021-5. doi: 10.1016/j.msec.2013.05.044. Epub 2013 May 28.
10
A damage-tolerant glass.一种耐损伤玻璃。
Nat Mater. 2011 Feb;10(2):123-8. doi: 10.1038/nmat2930. Epub 2011 Jan 9.

本文引用的文献

1
The conflicts between strength and toughness.强度与韧性的矛盾。
Nat Mater. 2011 Oct 24;10(11):817-22. doi: 10.1038/nmat3115.
2
A damage-tolerant glass.一种耐损伤玻璃。
Nat Mater. 2011 Feb;10(2):123-8. doi: 10.1038/nmat2930. Epub 2011 Jan 9.
3
Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses.大块金属玻璃循环疲劳抗力差问题的解决方案。
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):4986-91. doi: 10.1073/pnas.0900740106. Epub 2009 Mar 16.
4
Materials science. Bulk metallic glasses.材料科学。大块金属玻璃。
Science. 2008 Jul 25;321(5888):502-3. doi: 10.1126/science.1158864.
7
Ductile bulk metallic glass.韧性块状金属玻璃。
Phys Rev Lett. 2004 Dec 17;93(25):255506. doi: 10.1103/PhysRevLett.93.255506. Epub 2004 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验