Suppr超能文献

内镜与 3D CT 衍生气道测量值的比较。

Comparison of endoscopic versus 3D CT derived airway measurements.

出版信息

Laryngoscope. 2013 Sep;123(9):2136-41. doi: 10.1002/lary.23836.

Abstract

OBJECTIVES/HYPOTHESIS: To understand: 1) how endoscopic airway measurements compare to three-dimensional (3D) CT derived measurements; 2) where each technique is potentially useful; and 3) where each has limitations.

STUDY DESIGN

Compare airway diameters and cross-sectional areas from endoscopic images and CT derived 3D reconstructions.

METHODS

Videobronchoscopy was performed and recorded on an adult-sized commercially available airway mannequin. At various levels, cross-sectional areas were measured from still video frames using a referent placed via the biopsy port. A 3D reconstruction was generated from a high resolution CT of the mannequin; planar sections were cut at similar cross-sectional levels; and cross-sectional areas were obtained.

RESULTS

At three levels of mechanically generated tracheal stricture, the differences between the endoscopic measurement and CT-derived cross-sectional area were 1%, 0%, and 7% (1.8, 0.8, and 14 mm²). At the vocal folds, the difference was 9% (7.8 mm²). The tip of the epiglottis and width of the epiglottis differed by 27% and 10% (18.73 mm², 0.40 mm). The airway measurements at the base of tongue, minimal cross-sectional area of the pharynx, and choana differed by 26%, 36%, and 30% (101.40 mm², 36.67 mm², 122.71 mm²).

CONCLUSIONS

Endoscopy is an effective tool for obtaining airway measurements compared with 3D reconstructions derived from CT. Concordance is best in geometrically simple areas where the entire cross-section measured is visible within one field of view (trachea, round; vocal folds, triangular) versus geometrically complex areas that encompass more than one field of view (i.e. pharynx, choana).

摘要

目的/假设:了解:1)内镜气道测量与三维(3D)CT 衍生测量的比较;2)每种技术的潜在用途;3)每种技术的局限性。

研究设计

比较内镜图像和 CT 衍生 3D 重建的气道直径和横截面积。

方法

在成人大小的商业可用气道模型上进行视频支气管镜检查并记录。在各个水平上,使用通过活检端口放置的参考物从静止视频帧测量横截面积。使用模型的高分辨率 CT 生成 3D 重建;在相似的横截层面切割平面部分;并获得横截面积。

结果

在三个机械产生的气管狭窄水平,内镜测量值与 CT 衍生的横截面积之间的差异分别为 1%、0%和 7%(1.8、0.8 和 14 mm²)。在声带处,差异为 9%(7.8 mm²)。会厌尖端和会厌宽度的差异分别为 27%和 10%(18.73 mm²,0.40 mm)。舌根部、咽最小横截面积和后鼻孔的气道测量值的差异分别为 26%、36%和 30%(101.40 mm²、36.67 mm²、122.71 mm²)。

结论

与 CT 衍生的 3D 重建相比,内镜检查是获取气道测量值的有效工具。在整个横截面积可在一个视野内看到的几何形状简单的区域(气管,圆形;声带,三角形)中,一致性最佳,而在包含多个视野的几何形状复杂的区域(即咽、后鼻孔)中,一致性较差。

相似文献

1
Comparison of endoscopic versus 3D CT derived airway measurements.
Laryngoscope. 2013 Sep;123(9):2136-41. doi: 10.1002/lary.23836.
3
Adding the third dimension--a new tool for constructing 3D models of the airway from 2D bronchoscopic video.
Int J Pediatr Otorhinolaryngol. 2009 Sep;73(9):1202-7. doi: 10.1016/j.ijporl.2009.05.009. Epub 2009 Jun 7.
4
Three-dimensional computed tomographic analysis of airway anatomy.
J Oral Maxillofac Surg. 2010 Feb;68(2):363-71. doi: 10.1016/j.joms.2009.09.086. Epub 2010 Jan 15.
5
A radiographic comparison of human airway anatomy and airway manikins--Implications for manikin-based testing of artificial airways.
Resuscitation. 2015 Jul;92:129-36. doi: 10.1016/j.resuscitation.2015.05.001. Epub 2015 May 11.
7
Tracheobronchial anomalies in syndromic craniosynostosis with 3-dimensional CT image and bronchoscopy.
J Craniofac Surg. 2011 Sep;22(5):1579-83. doi: 10.1097/SCS.0b013e31822e5d15.
8
Visualizing the pediatric airway: three-dimensional modeling of endoscopic images.
Ann Otol Rhinol Laryngol. 1996 Jan;105(1):12-7. doi: 10.1177/000348949610500103.
9
Geometric Validation of Continuous, Finely Sampled 3-D Reconstructions From aOCT and CT in Upper Airway Models.
IEEE Trans Med Imaging. 2019 Apr;38(4):1005-1015. doi: 10.1109/TMI.2018.2876625. Epub 2018 Oct 17.

引用本文的文献

1
Diagnostic tools in respiratory medicine (Review).
Biomed Rep. 2025 May 8;23(1):112. doi: 10.3892/br.2025.1990. eCollection 2025 Jul.
2
Point-of-care ultrasound-guided submucosal paclitaxel injection in tracheal stenosis model.
J Transl Int Med. 2023 May 7;11(1):70-80. doi: 10.2478/jtim-2022-0044. eCollection 2023 Mar.
5
Clinical validation and reproducibility of endoscopic airway measurement in pediatric aerodigestive evaluation.
Int J Pediatr Otorhinolaryngol. 2019 Jan;116:65-69. doi: 10.1016/j.ijporl.2018.10.004. Epub 2018 Oct 11.
6
Geometric Validation of Continuous, Finely Sampled 3-D Reconstructions From aOCT and CT in Upper Airway Models.
IEEE Trans Med Imaging. 2019 Apr;38(4):1005-1015. doi: 10.1109/TMI.2018.2876625. Epub 2018 Oct 17.
10
Upper Airway Computed Tomography Measures and Receipt of Tracheotomy in Infants With Robin Sequence.
JAMA Otolaryngol Head Neck Surg. 2016 Aug 1;142(8):750-7. doi: 10.1001/jamaoto.2016.1010.

本文引用的文献

1
Objectification of cranial vault correction for craniosynostosis by three-dimensional photography.
J Craniomaxillofac Surg. 2012 Dec;40(8):726-30. doi: 10.1016/j.jcms.2012.01.007. Epub 2012 Feb 23.
3
Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography.
Eur Respir J. 2010 Jan;35(1):34-41. doi: 10.1183/09031936.00041809. Epub 2009 Jun 18.
4
Using optical coherence tomography to improve diagnostic and therapeutic bronchoscopy.
Chest. 2009 Jul;136(1):272-276. doi: 10.1378/chest.08-2800. Epub 2009 Feb 18.
5
Upper airway dimensions in children using rigid video-bronchoscopy and a computer software: description of a measurement technique.
Paediatr Anaesth. 2008 Jul;18(7):645-53. doi: 10.1111/j.1460-9592.2008.02533.x. Epub 2008 May 8.
8
Assessment of airway caliber in quantitative videobronchoscopy.
Respiration. 2007;74(4):432-8. doi: 10.1159/000097993. Epub 2006 Dec 11.
9
Objective sizing of upper airway stenosis: a quantitative endoscopic approach.
Laryngoscope. 2006 Jan;116(1):12-7. doi: 10.1097/01.mlg.0000186657.62474.88.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验