Li Qizhai, Hu Jiyuan, Ding Juan, Zheng Gang
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
Biostatistics. 2014 Apr;15(2):284-95. doi: 10.1093/biostatistics/kxt045. Epub 2013 Oct 29.
A classical approach to combine independent test statistics is Fisher's combination of $p$-values, which follows the $\chi ^2$ distribution. When the test statistics are dependent, the gamma distribution (GD) is commonly used for the Fisher's combination test (FCT). We propose to use two generalizations of the GD: the generalized and the exponentiated GDs. We study some properties of mis-using the GD for the FCT to combine dependent statistics when one of the two proposed distributions are true. Our results show that both generalizations have better control of type I error rates than the GD, which tends to have inflated type I error rates at more extreme tails. In practice, common model selection criteria (e.g. Akaike information criterion/Bayesian information criterion) can be used to help select a better distribution to use for the FCT. A simple strategy of the two generalizations of the GD in genome-wide association studies is discussed. Applications of the results to genetic pleiotrophic associations are described, where multiple traits are tested for association with a single marker.
一种用于合并独立检验统计量的经典方法是费舍尔的p值合并法,它服从卡方分布。当检验统计量相关时,伽马分布(GD)通常用于费舍尔合并检验(FCT)。我们建议使用伽马分布的两种推广形式:广义伽马分布和指数伽马分布。我们研究了在两种提议分布之一为真的情况下,将伽马分布误用于费舍尔合并检验以合并相关统计量的一些性质。我们的结果表明,这两种推广形式在控制第一类错误率方面都比伽马分布更好,伽马分布在更极端的尾部往往会出现第一类错误率膨胀的情况。在实践中,可以使用常见的模型选择标准(如赤池信息准则/贝叶斯信息准则)来帮助选择用于费舍尔合并检验的更好分布。讨论了在全基因组关联研究中伽马分布两种推广形式的一种简单策略。描述了这些结果在基因多效性关联中的应用,其中对多个性状与单个标记的关联性进行检验。