Liu Zhonghua, Lin Xihong
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston 02115, U.S.A.
Biometrics. 2018 Mar;74(1):165-175. doi: 10.1111/biom.12735. Epub 2017 Jun 26.
We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis.
在本文中,我们利用全基因组关联研究(GWAS)中个体表型分析的汇总统计数据,研究联合检验一个基因变异与多个相关表型之间的关联。我们使用个体表型GWAS分析的汇总统计数据估计表型间的相关矩阵,并通过考虑表型间的相关性来开发用于多个表型的基因关联检验,而无需获取个体水平的数据。由于基因变异在全基因组中对多个表型的影响往往不同,且表型间的相关性可能是任意的,我们通过在线性混合模型中联合检验汇总统计数据的一个共同均值和一个方差分量,提出了稳健且强大的多表型检验程序。我们通过解析计算所提出检验的p值。这种计算优势使得我们的方法在大规模GWAS中具有实际吸引力。我们进行了模拟研究,以表明所提出的检验保持了正确的I型错误率,并在各种情况下将其功效与现有方法进行比较。我们将所提出的检验应用于一个GWAS全球脂质遗传学联盟汇总统计数据集,并识别出了原始单性状分析遗漏的其他基因变异。