Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA, Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA 94158, USA, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA, Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA, Chair of Genome Oriented Bioinformatics, Center of Life and Food Science, Freising-Weihenstephan, Technische Universität München, 80333, Munich, Germany, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158 and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
Bioinformatics. 2014 Jan 1;30(1):50-60. doi: 10.1093/bioinformatics/btt622. Epub 2013 Oct 30.
MOTIVATION: Several cancer types consist of multiple genetically and phenotypically distinct subpopulations. The underlying mechanism for this intra-tumoral heterogeneity can be explained by the clonal evolution model, whereby growth advantageous mutations cause the expansion of cancer cell subclones. The recurrent phenotype of many cancers may be a consequence of these coexisting subpopulations responding unequally to therapies. Methods to computationally infer tumor evolution and subpopulation diversity are emerging and they hold the promise to improve the understanding of genetic and molecular determinants of recurrence. RESULTS: To address cellular subpopulation dynamics within human tumors, we developed a bioinformatic method, EXPANDS. It estimates the proportion of cells harboring specific mutations in a tumor. By modeling cellular frequencies as probability distributions, EXPANDS predicts mutations that accumulate in a cell before its clonal expansion. We assessed the performance of EXPANDS on one whole genome sequenced breast cancer and performed SP analyses on 118 glioblastoma multiforme samples obtained from TCGA. Our results inform about the extent of subclonal diversity in primary glioblastoma, subpopulation dynamics during recurrence and provide a set of candidate genes mutated in the most well-adapted subpopulations. In summary, EXPANDS predicts tumor purity and subclonal composition from sequencing data. AVAILABILITY AND IMPLEMENTATION: EXPANDS is available for download at http://code.google.com/p/expands (matlab version--used in this manuscript) and http://cran.r-project.org/web/packages/expands (R version).
动机:几种癌症类型包含多个在遗传和表型上明显不同的亚群。这种肿瘤内异质性的潜在机制可以用克隆进化模型来解释,即生长有利的突变导致癌细胞亚克隆的扩增。许多癌症的反复出现的表型可能是由于这些共存的亚群对治疗的反应不均等造成的。计算推断肿瘤进化和亚群多样性的方法正在出现,它们有望提高对复发的遗传和分子决定因素的理解。
结果:为了解决人类肿瘤中细胞亚群的动态变化,我们开发了一种生物信息学方法,EXPANDS。它估计肿瘤中特定突变的细胞比例。通过将细胞频率建模为概率分布,EXPANDS 预测了在细胞克隆扩增之前积累的突变。我们在一个全基因组测序的乳腺癌上评估了 EXPANDS 的性能,并在从 TCGA 获得的 118 个胶质母细胞瘤多形性样本上进行了 SP 分析。我们的结果提供了关于原发性胶质母细胞瘤中亚群多样性的程度、复发过程中的亚群动态以及一组在最适应的亚群中突变的候选基因的信息。总之,EXPANDS 可以从测序数据中预测肿瘤纯度和亚群组成。
可用性和实现:EXPANDS 可从以下网址下载:http://code.google.com/p/expands(用于本文的 matlab 版本)和 http://cran.r-project.org/web/packages/expands(R 版本)。
Bioinformatics. 2013-10-30
Cancer Res. 2017-11-29
FEBS Open Bio. 2020-5
J Transl Med. 2025-4-21
PLoS Comput Biol. 2024-12-4
J Cancer Res Clin Oncol. 2023-9
Endocr Relat Cancer. 2022-12-1
Biomedicines. 2022-7-27
Mol Aspects Med. 2014-10
Proc Natl Acad Sci U S A. 2013-2-14
Cell. 2012-5-17
Nat Biotechnol. 2012-5