Suppr超能文献

肿瘤细胞亚克隆进化建模。

Modeling the Subclonal Evolution of Cancer Cell Populations.

机构信息

Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona.

Biodesign Institute, Tempe, Arizona.

出版信息

Cancer Res. 2018 Feb 1;78(3):830-839. doi: 10.1158/0008-5472.CAN-17-1229. Epub 2017 Nov 29.

Abstract

Increasing evidence shows that tumor clonal architectures are often the consequence of a complex branching process, yet little is known about the expected dynamics and extent to which these divergent subclonal expansions occur. Here, we develop and implement more than 88,000 instances of a stochastic evolutionary model simulating genetic drift and neoplastic progression. Under different combinations of population genetic parameter values, including those estimated for colorectal cancer and glioblastoma multiforme, the distribution of sizes of subclones carrying driver mutations had a heavy right tail at the time of tumor detection, with only 1 to 4 dominant clones present at ≥10% frequency. In contrast, the vast majority of subclones were present at <10% frequency, many of which had higher fitness than currently dominant clones. The number of dominant clones (≥10% frequency) in a tumor correlated strongly with the number of subclones (<10% of the tumor). Overall, these subclones were frequently below current standard detection thresholds, frequently harbored treatment-resistant mutations, and were more common in slow-growing tumors. The model presented in this paper addresses tumor heterogeneity by framing expectations for the number of resistant subclones in a tumor, with implications for future studies of the evolution of therapeutic resistance. .

摘要

越来越多的证据表明,肿瘤克隆结构通常是复杂分支过程的结果,但对于这些不同亚克隆扩张的预期动态和程度知之甚少。在这里,我们开发并实现了超过 88000 个随机进化模型实例,用于模拟遗传漂变和肿瘤进展。在不同的群体遗传参数值组合下,包括结直肠癌和胶质母细胞瘤多形性的估计值,携带驱动突变的亚克隆的大小分布在肿瘤检测时具有较重的右尾,只有 1 到 4 个主要克隆以≥10%的频率存在。相比之下,绝大多数亚克隆的频率<10%,其中许多亚克隆的适应性比当前主要克隆高。肿瘤中主要克隆(≥10%频率)的数量与亚克隆的数量(肿瘤的<10%)密切相关。总体而言,这些亚克隆经常低于当前的标准检测阈值,经常携带治疗耐药性突变,并且在生长缓慢的肿瘤中更为常见。本文提出的模型通过构建肿瘤中耐药亚克隆数量的预期来解决肿瘤异质性问题,这对未来治疗耐药性进化的研究具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验