Kim Hoon, Zheng Siyuan, Amini Seyed S, Virk Selene M, Mikkelsen Tom, Brat Daniel J, Grimsby Jonna, Sougnez Carrie, Muller Florian, Hu Jian, Sloan Andrew E, Cohen Mark L, Van Meir Erwin G, Scarpace Lisa, Laird Peter W, Weinstein John N, Lander Eric S, Gabriel Stacey, Getz Gad, Meyerson Matthew, Chin Lynda, Barnholtz-Sloan Jill S, Verhaak Roel G W
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
Genome Res. 2015 Mar;25(3):316-27. doi: 10.1101/gr.180612.114. Epub 2015 Feb 3.
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity.
胶质母细胞瘤(GBM)是一种典型的异质性脑肿瘤,对传统治疗具有抗性。一小部分残留细胞会逃过手术以及放化疗,导致在诊断后约7个月出现典型的致命性肿瘤复发。了解这一残留细胞群的分子结构对于开发成功的治疗方法至关重要。我们对原发性和配对复发性GBM肿瘤的多个区域进行了全基因组测序和全外显子组测序,以重建残留的、具有治疗抗性的肿瘤起始细胞的基因组图谱。我们发现,p53通路的基因改变是预测胶质母细胞瘤中大量亚克隆突变的主要分子事件。导致复发的基因组路径高度特异,但大致可分为线性复发和分歧性复发,前者与原发性肿瘤具有广泛的遗传相似性,可直接追溯到其特定区域之一,后者与原发性肿瘤共享的基因改变很少,起源于肿瘤发生早期分支出来的细胞。我们的研究为原发性肿瘤中的基因改变如何影响随后肿瘤细胞的进化以及亚克隆异质性的出现提供了机制上的见解。