Suppr超能文献

胰腺癌的发病机制:来自动物模型的经验教训。

Pathogenesis of pancreatic cancer: lessons from animal models.

作者信息

Murtaugh L Charles

机构信息

1Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.

出版信息

Toxicol Pathol. 2014 Jan;42(1):217-28. doi: 10.1177/0192623313508250. Epub 2013 Oct 31.

Abstract

The past several decades have seen great effort devoted to mimicking the key features of pancreatic ductal adenocarcinoma (PDAC) in animals and have produced 2 robust models of this deadly cancer. Carcinogen-treated Syrian hamsters develop PDAC with genetic lesions, which reproduce those of human, including activation of the Kras oncogene, and early studies in this species validated nongenetic risk factors for PDAC including pancreatitis, obesity, and diabetes. More recently, PDAC research has been invigorated by the development of genetically engineered mouse models based on tissue-specific Kras activation and deletion of tumor suppressor genes. Surprisingly, mouse PDAC appears to arise from exocrine acinar rather than ductal cells, via a process of phenotypic reprogramming that is accelerated by inflammation. Studies in both models have uncovered molecular mechanisms by which inflammation promotes and sustains PDAC and identified targets for chemoprevention to suppress PDAC in high-risk individuals. The mouse model, in particular, has also been instrumental in developing new approaches to early detection as well as treatment of advanced disease. Together, animal models enable diverse approaches to basic and preclinical research on pancreatic cancer, the results of which will accelerate progress against this currently intractable cancer.

摘要

在过去几十年里,人们付出了巨大努力在动物身上模拟胰腺导管腺癌(PDAC)的关键特征,并建立了两种可靠的这种致命癌症模型。用致癌物处理过的叙利亚仓鼠会发生带有遗传损伤的PDAC,这些损伤与人类的损伤相似,包括Kras癌基因的激活,并且对该物种的早期研究验证了PDAC的非遗传风险因素,包括胰腺炎、肥胖和糖尿病。最近,基于组织特异性Kras激活和肿瘤抑制基因缺失的基因工程小鼠模型的发展,为PDAC研究注入了活力。令人惊讶的是,小鼠PDAC似乎是通过炎症加速的表型重编程过程,从外分泌腺泡细胞而非导管细胞产生的。对这两种模型的研究都揭示了炎症促进和维持PDAC的分子机制,并确定了在高危个体中抑制PDAC的化学预防靶点。特别是小鼠模型,在开发早期检测新方法以及晚期疾病治疗方法方面也发挥了重要作用。总之,动物模型为胰腺癌的基础研究和临床前研究提供了多种方法,其结果将加速攻克这种目前难以治疗的癌症的进程。

相似文献

1
Pathogenesis of pancreatic cancer: lessons from animal models.
Toxicol Pathol. 2014 Jan;42(1):217-28. doi: 10.1177/0192623313508250. Epub 2013 Oct 31.
2
A genetically engineered mouse model developing rapid progressive pancreatic ductal adenocarcinoma.
J Pathol. 2014 Oct;234(2):228-38. doi: 10.1002/path.4402. Epub 2014 Aug 4.
4
Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia.
Oncogene. 2013 Apr 11;32(15):1950-8. doi: 10.1038/onc.2012.210. Epub 2012 Jun 4.
5
Critical role of oncogenic KRAS in pancreatic cancer (Review).
Mol Med Rep. 2016 Jun;13(6):4943-9. doi: 10.3892/mmr.2016.5196. Epub 2016 Apr 27.
7
Zeb1 in Stromal Myofibroblasts Promotes -Driven Development of Pancreatic Cancer.
Cancer Res. 2018 May 15;78(10):2624-2637. doi: 10.1158/0008-5472.CAN-17-1882. Epub 2018 Feb 28.
8
Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53.
Oncogene. 2017 Jun 1;36(22):3149-3158. doi: 10.1038/onc.2016.461. Epub 2016 Dec 19.
9
Epithelial Nr5a2 heterozygosity cooperates with mutant Kras in the development of pancreatic cystic lesions.
J Pathol. 2021 Feb;253(2):174-185. doi: 10.1002/path.5570. Epub 2020 Nov 24.

引用本文的文献

1
Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators?
Cancer Metastasis Rev. 2021 Dec;40(4):1115-1139. doi: 10.1007/s10555-021-10016-0. Epub 2021 Dec 28.
2
Pathological Changes in Pancreatic Carcinogenesis: A Review.
Cancers (Basel). 2021 Feb 8;13(4):686. doi: 10.3390/cancers13040686.
3
Kras mutation rate precisely orchestrates ductal derived pancreatic intraepithelial neoplasia and pancreatic cancer.
Lab Invest. 2021 Feb;101(2):177-192. doi: 10.1038/s41374-020-00490-5. Epub 2020 Oct 2.
4
Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma.
Front Bioeng Biotechnol. 2019 Nov 13;7:307. doi: 10.3389/fbioe.2019.00307. eCollection 2019.
5
Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts.
Pancreas. 2018 Sep;47(8):924-936. doi: 10.1097/MPA.0000000000001136.
7
Differentiation and Inflammation: 'Best Enemies' in Gastrointestinal Carcinogenesis.
Trends Cancer. 2016 Dec;2(12):723-735. doi: 10.1016/j.trecan.2016.11.005.
8
Prevention of pancreatic cancer in a hamster model by cAMP decrease.
Oncotarget. 2016 Jul 12;7(28):44430-44441. doi: 10.18632/oncotarget.9790.
9
Developmental Pathways Direct Pancreatic Cancer Initiation from Its Cellular Origin.
Stem Cells Int. 2016;2016:9298535. doi: 10.1155/2016/9298535. Epub 2015 Nov 22.

本文引用的文献

2
3
Roles for KRAS in pancreatic tumor development and progression.
Gastroenterology. 2013 Jun;144(6):1220-9. doi: 10.1053/j.gastro.2013.01.071.
4
Nr5a2 heterozygosity sensitises to, and cooperates with, inflammation in KRas(G12V)-driven pancreatic tumourigenesis.
Gut. 2014 Apr;63(4):647-55. doi: 10.1136/gutjnl-2012-304381. Epub 2013 Apr 18.
5
Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer.
Cancer Cell. 2013 Mar 18;23(3):406-20. doi: 10.1016/j.ccr.2013.01.023. Epub 2013 Feb 28.
6
Cancer statistics, 2013.
CA Cancer J Clin. 2013 Jan;63(1):11-30. doi: 10.3322/caac.21166. Epub 2013 Jan 17.
7
Oncogenic K-Ras requires activation for enhanced activity.
Oncogene. 2014 Jan 23;33(4):532-5. doi: 10.1038/onc.2012.619. Epub 2013 Jan 21.
10
Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study.
Gut. 2013 Dec;62(12):1764-70. doi: 10.1136/gutjnl-2012-303006. Epub 2012 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验