Sawitzke James A, Thomason Lynn C, Bubunenko Mikhail, Li Xintian, Costantino Nina, Court Donald L
Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
Methods Enzymol. 2013;533:157-77. doi: 10.1016/B978-0-12-420067-8.00010-6.
Recombineering provides the ability to make rapid, precise, and inexpensive genetic alterations to any DNA sequence, either in the chromosome or cloned onto a vector that replicates in E. coli (or other recombineering-proficient bacteria), and to do so in a highly efficient manner. Complicated genetic constructs that are impossible to make with in vitro genetic engineering can be created in days with recombineering. Recombineering with single-strand DNA (ssDNA) can be used to create single or multiple clustered point mutations, small or large (up to 10kb) deletions, and small (10-20 base) insertions such as sequence tags. Using optimized conditions, point mutations can be made with such high frequencies that they can be found without selection. This technology excels at creating both directed and random mutations.
重组工程技术能够对染色体上或克隆到在大肠杆菌(或其他具备重组工程能力的细菌)中复制的载体上的任何DNA序列进行快速、精确且低成本的基因改造,并且改造效率极高。通过重组工程技术,只需几天时间就能构建出用体外基因工程方法无法完成的复杂基因结构。利用单链DNA(ssDNA)进行的重组工程可用于产生单个或多个成簇的点突变、大小不等(小至大到10kb)的缺失以及小的(10 - 20个碱基)插入,如序列标签。在优化条件下,点突变的发生频率很高,无需筛选就能找到。这项技术在产生定向突变和随机突变方面都表现出色。