Suppr超能文献

重组工程:使用单链寡核苷酸的高效体内基因工程技术。

Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.

作者信息

Sawitzke James A, Thomason Lynn C, Bubunenko Mikhail, Li Xintian, Costantino Nina, Court Donald L

机构信息

Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.

出版信息

Methods Enzymol. 2013;533:157-77. doi: 10.1016/B978-0-12-420067-8.00010-6.

Abstract

Recombineering provides the ability to make rapid, precise, and inexpensive genetic alterations to any DNA sequence, either in the chromosome or cloned onto a vector that replicates in E. coli (or other recombineering-proficient bacteria), and to do so in a highly efficient manner. Complicated genetic constructs that are impossible to make with in vitro genetic engineering can be created in days with recombineering. Recombineering with single-strand DNA (ssDNA) can be used to create single or multiple clustered point mutations, small or large (up to 10kb) deletions, and small (10-20 base) insertions such as sequence tags. Using optimized conditions, point mutations can be made with such high frequencies that they can be found without selection. This technology excels at creating both directed and random mutations.

摘要

重组工程技术能够对染色体上或克隆到在大肠杆菌(或其他具备重组工程能力的细菌)中复制的载体上的任何DNA序列进行快速、精确且低成本的基因改造,并且改造效率极高。通过重组工程技术,只需几天时间就能构建出用体外基因工程方法无法完成的复杂基因结构。利用单链DNA(ssDNA)进行的重组工程可用于产生单个或多个成簇的点突变、大小不等(小至大到10kb)的缺失以及小的(10 - 20个碱基)插入,如序列标签。在优化条件下,点突变的发生频率很高,无需筛选就能找到。这项技术在产生定向突变和随机突变方面都表现出色。

相似文献

1
Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
Methods Enzymol. 2013;533:157-77. doi: 10.1016/B978-0-12-420067-8.00010-6.
2
Recombineering in Non-Model Bacteria.
Curr Protoc. 2022 Dec;2(12):e605. doi: 10.1002/cpz1.605.
3
Recombineering: genetic engineering in bacteria using homologous recombination.
Curr Protoc Mol Biol. 2014 Apr 14;106:1.16.1-1.16.39. doi: 10.1002/0471142727.mb0116s106.
4
In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides.
Virology. 2004 Feb 20;319(2):185-9. doi: 10.1016/j.virol.2003.11.007.
5
Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond.
Methods Enzymol. 2007;421:171-99. doi: 10.1016/S0076-6879(06)21015-2.
6
High efficiency recombineering in lactic acid bacteria.
Nucleic Acids Res. 2012 May;40(10):e76. doi: 10.1093/nar/gks147. Epub 2012 Feb 10.
7
Scarless Recombineering of Phage in Lysogenic State.
Methods Mol Biol. 2022;2479:1-9. doi: 10.1007/978-1-0716-2233-9_1.
9
Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering.
J Mol Biol. 2011 Mar 18;407(1):45-59. doi: 10.1016/j.jmb.2011.01.030. Epub 2011 Jan 19.

引用本文的文献

1
Genotype-by-environment interactions govern fitness changes associated with adaptive mutations in two-component response systems.
Front Genet. 2024 Feb 23;15:1349507. doi: 10.3389/fgene.2024.1349507. eCollection 2024.
3
Strategies to identify and edit improvements in synthetic genome segments episomally.
Nucleic Acids Res. 2023 Oct 13;51(18):10094-10106. doi: 10.1093/nar/gkad692.
4
Reporting off-target effects of recombinant engineering using the pORTMAGE system.
J Microbiol Methods. 2023 Jan;204:106627. doi: 10.1016/j.mimet.2022.106627. Epub 2022 Nov 25.
5
Protein Transfer through an F Plasmid-Encoded Type IV Secretion System Suppresses the Mating-Induced SOS Response.
mBio. 2021 Aug 31;12(4):e0162921. doi: 10.1128/mBio.01629-21. Epub 2021 Jul 13.
6
Site-Directed Mutagenesis of Large Biosynthetic Gene Clusters Oligonucleotide Recombineering and CRISPR/Cas9 Targeting.
ACS Synth Biol. 2020 Jul 17;9(7):1917-1922. doi: 10.1021/acssynbio.0c00265. Epub 2020 Jul 6.
7
Pass-back chain extension expands multimodular assembly line biosynthesis.
Nat Chem Biol. 2020 Jan;16(1):42-49. doi: 10.1038/s41589-019-0385-4. Epub 2019 Oct 21.
9
Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in .
Genetics. 2017 Oct;207(2):389-412. doi: 10.1534/genetics.117.199968.

本文引用的文献

1
Recombineering: a homologous recombination-based method of genetic engineering.
Nat Protoc. 2009;4(2):206-23. doi: 10.1038/nprot.2008.227.
2
Recombineering: genetic engineering in bacteria using homologous recombination.
Curr Protoc Mol Biol. 2007 Apr;Chapter 1:Unit 1.16. doi: 10.1002/0471142727.mb0116s78.
3
Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1626-31. doi: 10.1073/pnas.0709089105. Epub 2008 Jan 29.
4
Multicopy plasmid modification with phage lambda Red recombineering.
Plasmid. 2007 Sep;58(2):148-58. doi: 10.1016/j.plasmid.2007.03.001. Epub 2007 Apr 16.
5
Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond.
Methods Enzymol. 2007;421:171-99. doi: 10.1016/S0076-6879(06)21015-2.
6
A set of recombineering plasmids for gram-negative bacteria.
Gene. 2006 Sep 1;379:109-15. doi: 10.1016/j.gene.2006.04.018. Epub 2006 May 4.
7
Simple and highly efficient BAC recombineering using galK selection.
Nucleic Acids Res. 2005 Feb 24;33(4):e36. doi: 10.1093/nar/gni035.
8
In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides.
Virology. 2004 Feb 20;319(2):185-9. doi: 10.1016/j.virol.2003.11.007.
9
Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15748-53. doi: 10.1073/pnas.2434959100. Epub 2003 Dec 12.
10
High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides.
Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6742-6. doi: 10.1073/pnas.121164898. Epub 2001 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验