Suppr超能文献

大片段生物合成基因簇的定点突变 寡核苷酸重组和 CRISPR/Cas9 靶向技术。

Site-Directed Mutagenesis of Large Biosynthetic Gene Clusters Oligonucleotide Recombineering and CRISPR/Cas9 Targeting.

机构信息

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92037, United States.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92037, United States.

出版信息

ACS Synth Biol. 2020 Jul 17;9(7):1917-1922. doi: 10.1021/acssynbio.0c00265. Epub 2020 Jul 6.

Abstract

Genetic engineering of natural product biosynthetic gene clusters represents an attractive approach to access new and complex bioactive small molecules. However, due to the large number and size of some genes involved in specialized metabolism, notably those encoding modular polyketide synthase and nonribosomal peptide synthetase megaproteins, it remains difficult to introduce precise genetic mutations to probe domain activity or alter chemical product formation. Here, we report the development and validation of a robust method combining oligonucleotide recombineering and CRISPR/Cas9 targeting for rapid site-directed mutagenesis of cloned pathways, which can be directly transferred to a heterologous host for expression. We rapidly generated 12 point mutations and identified several important determinants of successful mutagenesis, including the protospacer/PAM sequence and presence of regions of local homology. Our approach may be broadly applicable for researchers interested in probing natural product biosynthesis or performing pathway engineering.

摘要

天然产物生物合成基因簇的遗传工程代表了一种有吸引力的方法,可以获得新的和复杂的生物活性小分子。然而,由于一些参与特殊代谢的基因数量和大小很大,特别是那些编码模块化聚酮合酶和非核糖体肽合酶的大型蛋白,因此仍然难以引入精确的遗传突变来探测结构域活性或改变化学产物的形成。在这里,我们报告了一种结合寡核苷酸重组和 CRISPR/Cas9 靶向的强大方法的开发和验证,该方法可用于快速定点突变克隆途径,该途径可直接转移到异源宿主进行表达。我们迅速产生了 12 个点突变,并确定了几个成功突变的重要决定因素,包括原间隔区/PAM 序列和局部同源区域的存在。我们的方法可能广泛适用于对天然产物生物合成进行探索或进行途径工程的研究人员。

相似文献

1
Site-Directed Mutagenesis of Large Biosynthetic Gene Clusters Oligonucleotide Recombineering and CRISPR/Cas9 Targeting.
ACS Synth Biol. 2020 Jul 17;9(7):1917-1922. doi: 10.1021/acssynbio.0c00265. Epub 2020 Jul 6.
2
3
CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes.
Biotechnol Lett. 2023 Jun;45(5-6):629-637. doi: 10.1007/s10529-023-03363-1. Epub 2023 Mar 17.
4
Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics.
Chembiochem. 2012 Apr 16;13(6):846-54. doi: 10.1002/cbic.201100798. Epub 2012 Mar 23.
7
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.
Appl Environ Microbiol. 2015 Aug;81(15):5103-14. doi: 10.1128/AEM.01248-15. Epub 2015 May 22.

引用本文的文献

1
Parallelized gene cluster editing illuminates mechanisms of epoxyketone proteasome inhibitor biosynthesis.
Nucleic Acids Res. 2023 Feb 22;51(3):1488-1499. doi: 10.1093/nar/gkad009.
3
Engineering Modular Polyketide Biosynthesis in Streptomyces Using CRISPR/Cas: A Practical Guide.
Methods Mol Biol. 2022;2489:173-200. doi: 10.1007/978-1-0716-2273-5_10.
4
Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins.
Nat Commun. 2022 Jan 26;13(1):515. doi: 10.1038/s41467-022-27955-z.
5
Gene editing enables rapid engineering of complex antibiotic assembly lines.
Nat Commun. 2021 Nov 25;12(1):6872. doi: 10.1038/s41467-021-27139-1.

本文引用的文献

1
Emerging molecular biology tools and strategies for engineering natural product biosynthesis.
Metab Eng Commun. 2019 Nov 9;10:e00108. doi: 10.1016/j.mec.2019.e00108. eCollection 2020 Jun.
2
Pass-back chain extension expands multimodular assembly line biosynthesis.
Nat Chem Biol. 2020 Jan;16(1):42-49. doi: 10.1038/s41589-019-0385-4. Epub 2019 Oct 21.
5
Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
Methods Enzymol. 2013;533:157-77. doi: 10.1016/B978-0-12-420067-8.00010-6.
6
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.
7
Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity.
Angew Chem Int Ed Engl. 2012 Jul 16;51(29):7181-4. doi: 10.1002/anie.201202043. Epub 2012 Jun 18.
8
In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin A.
Chem Biol. 2012 Feb 24;19(2):297-306. doi: 10.1016/j.chembiol.2011.10.020.
9
Introducing the parvome: bioactive compounds in the microbial world.
ACS Chem Biol. 2012 Feb 17;7(2):252-9. doi: 10.1021/cb200337h. Epub 2011 Nov 17.
10
Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering.
J Mol Biol. 2011 Mar 18;407(1):45-59. doi: 10.1016/j.jmb.2011.01.030. Epub 2011 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验