Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
J Mol Biol. 2011 Mar 18;407(1):45-59. doi: 10.1016/j.jmb.2011.01.030. Epub 2011 Jan 19.
Recombination with single-strand DNA oligonucleotides (oligos) in Escherichia coli is an efficient and rapid way to modify replicons in vivo. The generation of nucleotide alteration by oligo recombination provides novel assays for studying cellular processes. Single-strand exonucleases inhibit oligo recombination, and recombination is increased by mutating all four known exonucleases. Increasing oligo concentration or adding nonspecific carrier oligo titrates out the exonucleases. In a model for oligo recombination, λ Beta protein anneals the oligo to complementary single-strand DNA at the replication fork. Mismatches are created, and the methyl-directed mismatch repair (MMR) system acts to eliminate the mismatches inhibiting recombination. Three ways to evade MMR through oligo design include, in addition to the desired change (1) a C·C mismatch 6 bp from that change; (2) four or more adjacent mismatches; or (3) mismatches at four or more consecutive wobble positions. The latter proves useful for making high-frequency changes that alter only the target amino acid sequence and even allows modification of essential genes. Efficient uptake of DNA is important for oligo-mediated recombination. Uptake of oligos or plasmids is dependent on media and is 10,000-fold reduced for cells grown in minimal versus rich medium. Genomewide engineering technologies utilizing recombineering will benefit from both optimized recombination frequencies and a greater understanding of how biological processes such as DNA replication and cell division impact recombinants formed at multiple chromosomal loci. Recombination events at multiple loci in individual cells are described here.
在大肠杆菌中,与单链 DNA 寡核苷酸(oligos)的重组是一种在体内有效且快速修饰复制子的方法。寡核苷酸重组产生的核苷酸改变为研究细胞过程提供了新的检测方法。单链核酸外切酶抑制寡核苷酸重组,而通过突变所有四个已知的核酸外切酶可以增加重组。增加寡核苷酸浓度或添加非特异性载体寡核苷酸可以使核酸外切酶滴定。在寡核苷酸重组的模型中,λβ蛋白将寡核苷酸与复制叉处的互补单链 DNA 退火。会产生错配,而甲基化指导的错配修复(MMR)系统会消除抑制重组的错配。通过寡核苷酸设计逃避 MMR 的三种方法除了所需的变化外,还包括(1)距离该变化 6 个碱基的 C·C 错配;(2)四个或更多相邻的错配;或(3)四个或更多连续的摆动位置的错配。后一种方法对于产生仅改变目标氨基酸序列的高频变化非常有用,甚至可以修饰必需基因。高效摄取 DNA 对于寡核苷酸介导的重组很重要。寡核苷酸或质粒的摄取取决于培养基,并且在最小培养基中生长的细胞中比在丰富培养基中减少 10000 倍。利用重组技术进行全基因组工程将受益于优化的重组频率以及更好地了解 DNA 复制和细胞分裂等生物学过程如何影响多个染色体位置形成的重组体。这里描述了单个细胞中多个基因座的重组事件。